blob: 072d291f3f93212f3edd8a494165cd6ad161ed22 [file] [log] [blame]
//===- TypeMetadataUtils.cpp - Utilities related to type metadata ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions that make it easier to manipulate type metadata
// for devirtualization.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
using namespace llvm;
// Search for virtual calls that call FPtr and add them to DevirtCalls.
static void
findCallsAtConstantOffset(SmallVectorImpl<DevirtCallSite> &DevirtCalls,
bool *HasNonCallUses, Value *FPtr, uint64_t Offset,
const CallInst *CI, DominatorTree &DT) {
for (const Use &U : FPtr->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
// Ignore this instruction if it is not dominated by the type intrinsic
// being analyzed. Otherwise we may transform a call sharing the same
// vtable pointer incorrectly. Specifically, this situation can arise
// after indirect call promotion and inlining, where we may have uses
// of the vtable pointer guarded by a function pointer check, and a fallback
// indirect call.
if (!DT.dominates(CI, User))
continue;
if (isa<BitCastInst>(User)) {
findCallsAtConstantOffset(DevirtCalls, HasNonCallUses, User, Offset, CI,
DT);
} else if (auto CI = dyn_cast<CallInst>(User)) {
DevirtCalls.push_back({Offset, CI});
} else if (auto II = dyn_cast<InvokeInst>(User)) {
DevirtCalls.push_back({Offset, II});
} else if (HasNonCallUses) {
*HasNonCallUses = true;
}
}
}
// Search for virtual calls that load from VPtr and add them to DevirtCalls.
static void findLoadCallsAtConstantOffset(
const Module *M, SmallVectorImpl<DevirtCallSite> &DevirtCalls, Value *VPtr,
int64_t Offset, const CallInst *CI, DominatorTree &DT) {
for (const Use &U : VPtr->uses()) {
Value *User = U.getUser();
if (isa<BitCastInst>(User)) {
findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset, CI, DT);
} else if (isa<LoadInst>(User)) {
findCallsAtConstantOffset(DevirtCalls, nullptr, User, Offset, CI, DT);
} else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
// Take into account the GEP offset.
if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
int64_t GEPOffset = M->getDataLayout().getIndexedOffsetInType(
GEP->getSourceElementType(), Indices);
findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset + GEPOffset,
CI, DT);
}
}
}
}
void llvm::findDevirtualizableCallsForTypeTest(
SmallVectorImpl<DevirtCallSite> &DevirtCalls,
SmallVectorImpl<CallInst *> &Assumes, const CallInst *CI,
DominatorTree &DT) {
assert(CI->getCalledFunction()->getIntrinsicID() == Intrinsic::type_test);
const Module *M = CI->getParent()->getParent()->getParent();
// Find llvm.assume intrinsics for this llvm.type.test call.
for (const Use &CIU : CI->uses()) {
if (auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser())) {
Function *F = AssumeCI->getCalledFunction();
if (F && F->getIntrinsicID() == Intrinsic::assume)
Assumes.push_back(AssumeCI);
}
}
// If we found any, search for virtual calls based on %p and add them to
// DevirtCalls.
if (!Assumes.empty())
findLoadCallsAtConstantOffset(
M, DevirtCalls, CI->getArgOperand(0)->stripPointerCasts(), 0, CI, DT);
}
void llvm::findDevirtualizableCallsForTypeCheckedLoad(
SmallVectorImpl<DevirtCallSite> &DevirtCalls,
SmallVectorImpl<Instruction *> &LoadedPtrs,
SmallVectorImpl<Instruction *> &Preds, bool &HasNonCallUses,
const CallInst *CI, DominatorTree &DT) {
assert(CI->getCalledFunction()->getIntrinsicID() ==
Intrinsic::type_checked_load);
auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!Offset) {
HasNonCallUses = true;
return;
}
for (const Use &U : CI->uses()) {
auto CIU = U.getUser();
if (auto EVI = dyn_cast<ExtractValueInst>(CIU)) {
if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 0) {
LoadedPtrs.push_back(EVI);
continue;
}
if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 1) {
Preds.push_back(EVI);
continue;
}
}
HasNonCallUses = true;
}
for (Value *LoadedPtr : LoadedPtrs)
findCallsAtConstantOffset(DevirtCalls, &HasNonCallUses, LoadedPtr,
Offset->getZExtValue(), CI, DT);
}
Constant *llvm::getPointerAtOffset(Constant *I, uint64_t Offset, Module &M) {
if (I->getType()->isPointerTy()) {
if (Offset == 0)
return I;
return nullptr;
}
const DataLayout &DL = M.getDataLayout();
if (auto *C = dyn_cast<ConstantStruct>(I)) {
const StructLayout *SL = DL.getStructLayout(C->getType());
if (Offset >= SL->getSizeInBytes())
return nullptr;
unsigned Op = SL->getElementContainingOffset(Offset);
return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
Offset - SL->getElementOffset(Op), M);
}
if (auto *C = dyn_cast<ConstantArray>(I)) {
ArrayType *VTableTy = C->getType();
uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
unsigned Op = Offset / ElemSize;
if (Op >= C->getNumOperands())
return nullptr;
return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
Offset % ElemSize, M);
}
return nullptr;
}