blob: 8447dc87069dbcc6c62220e7ea1e63fea0b44c44 [file] [log] [blame]
//===- SyncDependenceAnalysis.cpp - Divergent Branch Dependence Calculation
//--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm that returns for a divergent branch
// the set of basic blocks whose phi nodes become divergent due to divergent
// control. These are the blocks that are reachable by two disjoint paths from
// the branch or loop exits that have a reaching path that is disjoint from a
// path to the loop latch.
//
// The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
// control-induced divergence in phi nodes.
//
// -- Summary --
// The SyncDependenceAnalysis lazily computes sync dependences [3].
// The analysis evaluates the disjoint path criterion [2] by a reduction
// to SSA construction. The SSA construction algorithm is implemented as
// a simple data-flow analysis [1].
//
// [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
// [2] "Efficiently Computing Static Single Assignment Form
// and the Control Dependence Graph", TOPLAS '91,
// Cytron, Ferrante, Rosen, Wegman and Zadeck
// [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
// [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
//
// -- Sync dependence --
// Sync dependence [4] characterizes the control flow aspect of the
// propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// -- Reduction to SSA construction --
// There are two disjoint paths from A to X, if a certain variant of SSA
// construction places a phi node in X under the following set-up scheme [2].
//
// This variant of SSA construction ignores incoming undef values.
// That is paths from the entry without a definition do not result in
// phi nodes.
//
// entry
// / \
// A \
// / \ Y
// B C /
// \ / \ /
// D E
// \ /
// F
// Assume that A contains a divergent branch. We are interested
// in the set of all blocks where each block is reachable from A
// via two disjoint paths. This would be the set {D, F} in this
// case.
// To generally reduce this query to SSA construction we introduce
// a virtual variable x and assign to x different values in each
// successor block of A.
// entry
// / \
// A \
// / \ Y
// x = 0 x = 1 /
// \ / \ /
// D E
// \ /
// F
// Our flavor of SSA construction for x will construct the following
// entry
// / \
// A \
// / \ Y
// x0 = 0 x1 = 1 /
// \ / \ /
// x2=phi E
// \ /
// x3=phi
// The blocks D and F contain phi nodes and are thus each reachable
// by two disjoins paths from A.
//
// -- Remarks --
// In case of loop exits we need to check the disjoint path criterion for loops
// [2]. To this end, we check whether the definition of x differs between the
// loop exit and the loop header (_after_ SSA construction).
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include <stack>
#include <unordered_set>
#define DEBUG_TYPE "sync-dependence"
namespace llvm {
ConstBlockSet SyncDependenceAnalysis::EmptyBlockSet;
SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI)
: FuncRPOT(DT.getRoot()->getParent()), DT(DT), PDT(PDT), LI(LI) {}
SyncDependenceAnalysis::~SyncDependenceAnalysis() {}
using FunctionRPOT = ReversePostOrderTraversal<const Function *>;
// divergence propagator for reducible CFGs
struct DivergencePropagator {
const FunctionRPOT &FuncRPOT;
const DominatorTree &DT;
const PostDominatorTree &PDT;
const LoopInfo &LI;
// identified join points
std::unique_ptr<ConstBlockSet> JoinBlocks;
// reached loop exits (by a path disjoint to a path to the loop header)
SmallPtrSet<const BasicBlock *, 4> ReachedLoopExits;
// if DefMap[B] == C then C is the dominating definition at block B
// if DefMap[B] ~ undef then we haven't seen B yet
// if DefMap[B] == B then B is a join point of disjoint paths from X or B is
// an immediate successor of X (initial value).
using DefiningBlockMap = std::map<const BasicBlock *, const BasicBlock *>;
DefiningBlockMap DefMap;
// all blocks with pending visits
std::unordered_set<const BasicBlock *> PendingUpdates;
DivergencePropagator(const FunctionRPOT &FuncRPOT, const DominatorTree &DT,
const PostDominatorTree &PDT, const LoopInfo &LI)
: FuncRPOT(FuncRPOT), DT(DT), PDT(PDT), LI(LI),
JoinBlocks(new ConstBlockSet) {}
// set the definition at @block and mark @block as pending for a visit
void addPending(const BasicBlock &Block, const BasicBlock &DefBlock) {
bool WasAdded = DefMap.emplace(&Block, &DefBlock).second;
if (WasAdded)
PendingUpdates.insert(&Block);
}
void printDefs(raw_ostream &Out) {
Out << "Propagator::DefMap {\n";
for (const auto *Block : FuncRPOT) {
auto It = DefMap.find(Block);
Out << Block->getName() << " : ";
if (It == DefMap.end()) {
Out << "\n";
} else {
const auto *DefBlock = It->second;
Out << (DefBlock ? DefBlock->getName() : "<null>") << "\n";
}
}
Out << "}\n";
}
// process @succBlock with reaching definition @defBlock
// the original divergent branch was in @parentLoop (if any)
void visitSuccessor(const BasicBlock &SuccBlock, const Loop *ParentLoop,
const BasicBlock &DefBlock) {
// @succBlock is a loop exit
if (ParentLoop && !ParentLoop->contains(&SuccBlock)) {
DefMap.emplace(&SuccBlock, &DefBlock);
ReachedLoopExits.insert(&SuccBlock);
return;
}
// first reaching def?
auto ItLastDef = DefMap.find(&SuccBlock);
if (ItLastDef == DefMap.end()) {
addPending(SuccBlock, DefBlock);
return;
}
// a join of at least two definitions
if (ItLastDef->second != &DefBlock) {
// do we know this join already?
if (!JoinBlocks->insert(&SuccBlock).second)
return;
// update the definition
addPending(SuccBlock, SuccBlock);
}
}
// find all blocks reachable by two disjoint paths from @rootTerm.
// This method works for both divergent terminators and loops with
// divergent exits.
// @rootBlock is either the block containing the branch or the header of the
// divergent loop.
// @nodeSuccessors is the set of successors of the node (Loop or Terminator)
// headed by @rootBlock.
// @parentLoop is the parent loop of the Loop or the loop that contains the
// Terminator.
template <typename SuccessorIterable>
std::unique_ptr<ConstBlockSet>
computeJoinPoints(const BasicBlock &RootBlock,
SuccessorIterable NodeSuccessors, const Loop *ParentLoop) {
assert(JoinBlocks);
LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints. Parent loop: " << (ParentLoop ? ParentLoop->getName() : "<null>") << "\n" );
// bootstrap with branch targets
for (const auto *SuccBlock : NodeSuccessors) {
DefMap.emplace(SuccBlock, SuccBlock);
if (ParentLoop && !ParentLoop->contains(SuccBlock)) {
// immediate loop exit from node.
ReachedLoopExits.insert(SuccBlock);
} else {
// regular successor
PendingUpdates.insert(SuccBlock);
}
}
LLVM_DEBUG(
dbgs() << "SDA: rpo order:\n";
for (const auto * RpoBlock : FuncRPOT) {
dbgs() << "- " << RpoBlock->getName() << "\n";
}
);
auto ItBeginRPO = FuncRPOT.begin();
// skip until term (TODO RPOT won't let us start at @term directly)
for (; *ItBeginRPO != &RootBlock; ++ItBeginRPO) {}
auto ItEndRPO = FuncRPOT.end();
assert(ItBeginRPO != ItEndRPO);
// propagate definitions at the immediate successors of the node in RPO
auto ItBlockRPO = ItBeginRPO;
while ((++ItBlockRPO != ItEndRPO) &&
!PendingUpdates.empty()) {
const auto *Block = *ItBlockRPO;
LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");
// skip Block if not pending update
auto ItPending = PendingUpdates.find(Block);
if (ItPending == PendingUpdates.end())
continue;
PendingUpdates.erase(ItPending);
// propagate definition at Block to its successors
auto ItDef = DefMap.find(Block);
const auto *DefBlock = ItDef->second;
assert(DefBlock);
auto *BlockLoop = LI.getLoopFor(Block);
if (ParentLoop &&
(ParentLoop != BlockLoop && ParentLoop->contains(BlockLoop))) {
// if the successor is the header of a nested loop pretend its a
// single node with the loop's exits as successors
SmallVector<BasicBlock *, 4> BlockLoopExits;
BlockLoop->getExitBlocks(BlockLoopExits);
for (const auto *BlockLoopExit : BlockLoopExits) {
visitSuccessor(*BlockLoopExit, ParentLoop, *DefBlock);
}
} else {
// the successors are either on the same loop level or loop exits
for (const auto *SuccBlock : successors(Block)) {
visitSuccessor(*SuccBlock, ParentLoop, *DefBlock);
}
}
}
LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));
// We need to know the definition at the parent loop header to decide
// whether the definition at the header is different from the definition at
// the loop exits, which would indicate a divergent loop exits.
//
// A // loop header
// |
// B // nested loop header
// |
// C -> X (exit from B loop) -..-> (A latch)
// |
// D -> back to B (B latch)
// |
// proper exit from both loops
//
// analyze reached loop exits
if (!ReachedLoopExits.empty()) {
const BasicBlock *ParentLoopHeader =
ParentLoop ? ParentLoop->getHeader() : nullptr;
assert(ParentLoop);
auto ItHeaderDef = DefMap.find(ParentLoopHeader);
const auto *HeaderDefBlock = (ItHeaderDef == DefMap.end()) ? nullptr : ItHeaderDef->second;
LLVM_DEBUG(printDefs(dbgs()));
assert(HeaderDefBlock && "no definition at header of carrying loop");
for (const auto *ExitBlock : ReachedLoopExits) {
auto ItExitDef = DefMap.find(ExitBlock);
assert((ItExitDef != DefMap.end()) &&
"no reaching def at reachable loop exit");
if (ItExitDef->second != HeaderDefBlock) {
JoinBlocks->insert(ExitBlock);
}
}
}
return std::move(JoinBlocks);
}
};
const ConstBlockSet &SyncDependenceAnalysis::join_blocks(const Loop &Loop) {
using LoopExitVec = SmallVector<BasicBlock *, 4>;
LoopExitVec LoopExits;
Loop.getExitBlocks(LoopExits);
if (LoopExits.size() < 1) {
return EmptyBlockSet;
}
// already available in cache?
auto ItCached = CachedLoopExitJoins.find(&Loop);
if (ItCached != CachedLoopExitJoins.end()) {
return *ItCached->second;
}
// compute all join points
DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
auto JoinBlocks = Propagator.computeJoinPoints<const LoopExitVec &>(
*Loop.getHeader(), LoopExits, Loop.getParentLoop());
auto ItInserted = CachedLoopExitJoins.emplace(&Loop, std::move(JoinBlocks));
assert(ItInserted.second);
return *ItInserted.first->second;
}
const ConstBlockSet &
SyncDependenceAnalysis::join_blocks(const Instruction &Term) {
// trivial case
if (Term.getNumSuccessors() < 1) {
return EmptyBlockSet;
}
// already available in cache?
auto ItCached = CachedBranchJoins.find(&Term);
if (ItCached != CachedBranchJoins.end())
return *ItCached->second;
// compute all join points
DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
const auto &TermBlock = *Term.getParent();
auto JoinBlocks = Propagator.computeJoinPoints<succ_const_range>(
TermBlock, successors(Term.getParent()), LI.getLoopFor(&TermBlock));
auto ItInserted = CachedBranchJoins.emplace(&Term, std::move(JoinBlocks));
assert(ItInserted.second);
return *ItInserted.first->second;
}
} // namespace llvm