blob: 497397ff08eab2599b54a20c5f6076cf0b9e1a66 [file] [log] [blame]
// Copyright 2019 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "SpirvShader.hpp"
#include "SamplerCore.hpp" // TODO: Figure out what's needed.
#include "Device/Config.hpp"
#include "System/Debug.hpp"
#include "System/Math.hpp"
#include "Vulkan/VkDescriptorSetLayout.hpp"
#include "Vulkan/VkDevice.hpp"
#include "Vulkan/VkImageView.hpp"
#include "Vulkan/VkSampler.hpp"
#include <spirv/unified1/spirv.hpp>
#include <climits>
#include <mutex>
namespace sw {
SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, vk::SampledImageDescriptor const *imageDescriptor, const vk::Sampler *sampler)
{
ImageInstruction instruction(inst);
const auto samplerId = sampler ? sampler->id : 0;
ASSERT(imageDescriptor->imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch));
ASSERT(imageDescriptor->device);
vk::Device::SamplingRoutineCache::Key key = { inst, imageDescriptor->imageViewId, samplerId };
vk::Device::SamplingRoutineCache *cache = imageDescriptor->device->getSamplingRoutineCache();
auto createSamplingRoutine = [&](const vk::Device::SamplingRoutineCache::Key &key) {
auto type = imageDescriptor->type;
Sampler samplerState = {};
samplerState.textureType = type;
samplerState.textureFormat = imageDescriptor->format;
samplerState.addressingModeU = convertAddressingMode(0, sampler, type);
samplerState.addressingModeV = convertAddressingMode(1, sampler, type);
samplerState.addressingModeW = convertAddressingMode(2, sampler, type);
samplerState.mipmapFilter = convertMipmapMode(sampler);
samplerState.swizzle = imageDescriptor->swizzle;
samplerState.gatherComponent = instruction.gatherComponent;
if(sampler)
{
samplerState.textureFilter = convertFilterMode(sampler, type, instruction);
samplerState.border = sampler->borderColor;
samplerState.mipmapFilter = convertMipmapMode(sampler);
samplerState.highPrecisionFiltering = (sampler->filteringPrecision == VK_SAMPLER_FILTERING_PRECISION_MODE_HIGH_GOOGLE);
samplerState.compareEnable = (sampler->compareEnable != VK_FALSE);
samplerState.compareOp = sampler->compareOp;
samplerState.unnormalizedCoordinates = (sampler->unnormalizedCoordinates != VK_FALSE);
samplerState.ycbcrModel = sampler->ycbcrModel;
samplerState.studioSwing = sampler->studioSwing;
samplerState.swappedChroma = sampler->swappedChroma;
samplerState.mipLodBias = sampler->mipLodBias;
samplerState.maxAnisotropy = sampler->maxAnisotropy;
samplerState.minLod = sampler->minLod;
samplerState.maxLod = sampler->maxLod;
}
else
{
// OpImageFetch does not take a sampler descriptor, but for VK_EXT_image_robustness
// requires replacing invalid texels with zero.
// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
samplerState.border = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
}
return emitSamplerRoutine(instruction, samplerState);
};
auto routine = cache->getOrCreate(key, createSamplingRoutine);
return (ImageSampler *)(routine->getEntry());
}
std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstruction instruction, const Sampler &samplerState)
{
// TODO(b/129523279): Hold a separate mutex lock for the sampler being built.
rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function;
{
Pointer<Byte> texture = function.Arg<0>();
Pointer<SIMD::Float> in = function.Arg<1>();
Pointer<SIMD::Float> out = function.Arg<2>();
Pointer<Byte> constants = function.Arg<3>();
SIMD::Float uvwa[4];
SIMD::Float dRef;
SIMD::Float lodOrBias; // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod).
Vector4f dsx;
Vector4f dsy;
Vector4i offset;
SIMD::Int sampleId;
SamplerFunction samplerFunction = instruction.getSamplerFunction();
uint32_t i = 0;
for(; i < instruction.coordinates; i++)
{
uvwa[i] = in[i];
}
if(instruction.isDref())
{
dRef = in[i];
i++;
}
if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch)
{
lodOrBias = in[i];
i++;
}
else if(instruction.samplerMethod == Grad)
{
for(uint32_t j = 0; j < instruction.grad; j++, i++)
{
dsx[j] = in[i];
}
for(uint32_t j = 0; j < instruction.grad; j++, i++)
{
dsy[j] = in[i];
}
}
for(uint32_t j = 0; j < instruction.offset; j++, i++)
{
offset[j] = As<SIMD::Int>(in[i]);
}
if(instruction.sample)
{
sampleId = As<SIMD::Int>(in[i]);
}
SamplerCore s(constants, samplerState);
// For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes
// a single LOD per four elements, so we sample the image again for each LOD separately.
if(samplerFunction.method == Lod || samplerFunction.method == Grad) // TODO(b/133868964): Also handle divergent Bias and Fetch with Lod.
{
auto lod = Pointer<Float>(&lodOrBias);
For(Int i = 0, i < SIMD::Width, i++)
{
SIMD::Float dPdx;
SIMD::Float dPdy;
dPdx.x = Pointer<Float>(&dsx.x)[i];
dPdx.y = Pointer<Float>(&dsx.y)[i];
dPdx.z = Pointer<Float>(&dsx.z)[i];
dPdy.x = Pointer<Float>(&dsy.x)[i];
dPdy.y = Pointer<Float>(&dsy.y)[i];
dPdy.z = Pointer<Float>(&dsy.z)[i];
Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lod[i], dPdx, dPdy, offset, sampleId, samplerFunction);
Pointer<Float> rgba = out;
rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i];
rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i];
rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i];
rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i];
}
}
else
{
Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lodOrBias.x, (dsx.x), (dsy.x), offset, sampleId, samplerFunction);
Pointer<SIMD::Float> rgba = out;
rgba[0] = sample.x;
rgba[1] = sample.y;
rgba[2] = sample.z;
rgba[3] = sample.w;
}
}
return function("sampler");
}
sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler, VkImageViewType imageViewType, ImageInstruction instruction)
{
if(instruction.samplerMethod == Gather)
{
return FILTER_GATHER;
}
if(instruction.samplerMethod == Fetch)
{
return FILTER_POINT;
}
if(sampler->anisotropyEnable != VK_FALSE)
{
if(imageViewType == VK_IMAGE_VIEW_TYPE_2D || imageViewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY)
{
if(instruction.samplerMethod != Lod) // TODO(b/162926129): Support anisotropic filtering with explicit LOD.
{
return FILTER_ANISOTROPIC;
}
}
}
switch(sampler->magFilter)
{
case VK_FILTER_NEAREST:
switch(sampler->minFilter)
{
case VK_FILTER_NEAREST: return FILTER_POINT;
case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT;
default:
UNSUPPORTED("minFilter %d", sampler->minFilter);
return FILTER_POINT;
}
break;
case VK_FILTER_LINEAR:
switch(sampler->minFilter)
{
case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR;
case VK_FILTER_LINEAR: return FILTER_LINEAR;
default:
UNSUPPORTED("minFilter %d", sampler->minFilter);
return FILTER_POINT;
}
break;
default:
break;
}
UNSUPPORTED("magFilter %d", sampler->magFilter);
return FILTER_POINT;
}
sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler)
{
if(!sampler)
{
return MIPMAP_POINT; // Samplerless operations (OpImageFetch) can take an integer Lod operand.
}
if(sampler->ycbcrModel != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
{
// TODO(b/151263485): Check image view level count instead.
return MIPMAP_NONE;
}
switch(sampler->mipmapMode)
{
case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR;
default:
UNSUPPORTED("mipmapMode %d", sampler->mipmapMode);
return MIPMAP_POINT;
}
}
sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::Sampler *sampler, VkImageViewType imageViewType)
{
switch(imageViewType)
{
case VK_IMAGE_VIEW_TYPE_1D:
case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
if(coordinateIndex >= 1)
{
return ADDRESSING_UNUSED;
}
break;
case VK_IMAGE_VIEW_TYPE_2D:
case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
if(coordinateIndex == 2)
{
return ADDRESSING_UNUSED;
}
break;
case VK_IMAGE_VIEW_TYPE_3D:
break;
case VK_IMAGE_VIEW_TYPE_CUBE:
case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
if(coordinateIndex <= 1) // Cube faces themselves are addressed as 2D images.
{
// Vulkan 1.1 spec:
// "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then
// VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges
// is performed as described earlier in the Cube map edge handling section."
// This corresponds with our 'SEAMLESS' addressing mode.
return ADDRESSING_SEAMLESS;
}
else // coordinateIndex == 2
{
// The cube face is an index into 2D array layers.
return ADDRESSING_CUBEFACE;
}
break;
default:
UNSUPPORTED("imageViewType %d", imageViewType);
return ADDRESSING_WRAP;
}
if(!sampler)
{
// OpImageFetch does not take a sampler descriptor, but still needs a valid
// addressing mode that prevents out-of-bounds accesses:
// "The value returned by a read of an invalid texel is undefined, unless that
// read operation is from a buffer resource and the robustBufferAccess feature
// is enabled. In that case, an invalid texel is replaced as described by the
// robustBufferAccess feature." - Vulkan 1.1
// VK_EXT_image_robustness requires nullifying out-of-bounds accesses.
// ADDRESSING_BORDER causes texel replacement to be performed.
// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
return ADDRESSING_BORDER;
}
VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT;
switch(coordinateIndex)
{
case 0: addressMode = sampler->addressModeU; break;
case 1: addressMode = sampler->addressModeV; break;
case 2: addressMode = sampler->addressModeW; break;
default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex);
}
switch(addressMode)
{
case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE;
default:
UNSUPPORTED("addressMode %d", addressMode);
return ADDRESSING_WRAP;
}
}
} // namespace sw