swiftshader / SwiftShader / 10a5a7fe651b2b241f3331d78053396c6b2e1ac4 / . / third_party / llvm-subzero / include / llvm / ADT / APInt.h

//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// | |

// | |

// The LLVM Compiler Infrastructure | |

// | |

// This file is distributed under the University of Illinois Open Source | |

// License. See LICENSE.TXT for details. | |

// | |

//===----------------------------------------------------------------------===// | |

/// | |

/// \file | |

/// \brief This file implements a class to represent arbitrary precision | |

/// integral constant values and operations on them. | |

/// | |

//===----------------------------------------------------------------------===// | |

#ifndef LLVM_ADT_APINT_H | |

#define LLVM_ADT_APINT_H | |

#include "llvm/Support/Compiler.h" | |

#include "llvm/Support/MathExtras.h" | |

#include <cassert> | |

#include <climits> | |

#include <cstring> | |

#include <string> | |

namespace llvm { | |

class FoldingSetNodeID; | |

class StringRef; | |

class hash_code; | |

class raw_ostream; | |

template <typename T> class SmallVectorImpl; | |

template <typename T> class ArrayRef; | |

// An unsigned host type used as a single part of a multi-part | |

// bignum. | |

typedef uint64_t integerPart; | |

const unsigned int host_char_bit = 8; | |

const unsigned int integerPartWidth = | |

host_char_bit * static_cast<unsigned int>(sizeof(integerPart)); | |

class APInt; | |

inline APInt operator-(APInt); | |

//===----------------------------------------------------------------------===// | |

// APInt Class | |

//===----------------------------------------------------------------------===// | |

/// \brief Class for arbitrary precision integers. | |

/// | |

/// APInt is a functional replacement for common case unsigned integer type like | |

/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width | |

/// integer sizes and large integer value types such as 3-bits, 15-bits, or more | |

/// than 64-bits of precision. APInt provides a variety of arithmetic operators | |

/// and methods to manipulate integer values of any bit-width. It supports both | |

/// the typical integer arithmetic and comparison operations as well as bitwise | |

/// manipulation. | |

/// | |

/// The class has several invariants worth noting: | |

/// * All bit, byte, and word positions are zero-based. | |

/// * Once the bit width is set, it doesn't change except by the Truncate, | |

/// SignExtend, or ZeroExtend operations. | |

/// * All binary operators must be on APInt instances of the same bit width. | |

/// Attempting to use these operators on instances with different bit | |

/// widths will yield an assertion. | |

/// * The value is stored canonically as an unsigned value. For operations | |

/// where it makes a difference, there are both signed and unsigned variants | |

/// of the operation. For example, sdiv and udiv. However, because the bit | |

/// widths must be the same, operations such as Mul and Add produce the same | |

/// results regardless of whether the values are interpreted as signed or | |

/// not. | |

/// * In general, the class tries to follow the style of computation that LLVM | |

/// uses in its IR. This simplifies its use for LLVM. | |

/// | |

class LLVM_NODISCARD APInt { | |

unsigned BitWidth; ///< The number of bits in this APInt. | |

/// This union is used to store the integer value. When the | |

/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. | |

union { | |

uint64_t VAL; ///< Used to store the <= 64 bits integer value. | |

uint64_t *pVal; ///< Used to store the >64 bits integer value. | |

}; | |

/// This enum is used to hold the constants we needed for APInt. | |

enum { | |

/// Bits in a word | |

APINT_BITS_PER_WORD = | |

static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT, | |

/// Byte size of a word | |

APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t)) | |

}; | |

friend struct DenseMapAPIntKeyInfo; | |

/// \brief Fast internal constructor | |

/// | |

/// This constructor is used only internally for speed of construction of | |

/// temporaries. It is unsafe for general use so it is not public. | |

APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {} | |

/// \brief Determine if this APInt just has one word to store value. | |

/// | |

/// \returns true if the number of bits <= 64, false otherwise. | |

bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } | |

/// \brief Determine which word a bit is in. | |

/// | |

/// \returns the word position for the specified bit position. | |

static unsigned whichWord(unsigned bitPosition) { | |

return bitPosition / APINT_BITS_PER_WORD; | |

} | |

/// \brief Determine which bit in a word a bit is in. | |

/// | |

/// \returns the bit position in a word for the specified bit position | |

/// in the APInt. | |

static unsigned whichBit(unsigned bitPosition) { | |

return bitPosition % APINT_BITS_PER_WORD; | |

} | |

/// \brief Get a single bit mask. | |

/// | |

/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set | |

/// This method generates and returns a uint64_t (word) mask for a single | |

/// bit at a specific bit position. This is used to mask the bit in the | |

/// corresponding word. | |

static uint64_t maskBit(unsigned bitPosition) { | |

return 1ULL << whichBit(bitPosition); | |

} | |

/// \brief Clear unused high order bits | |

/// | |

/// This method is used internally to clear the top "N" bits in the high order | |

/// word that are not used by the APInt. This is needed after the most | |

/// significant word is assigned a value to ensure that those bits are | |

/// zero'd out. | |

APInt &clearUnusedBits() { | |

// Compute how many bits are used in the final word | |

unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; | |

if (wordBits == 0) | |

// If all bits are used, we want to leave the value alone. This also | |

// avoids the undefined behavior of >> when the shift is the same size as | |

// the word size (64). | |

return *this; | |

// Mask out the high bits. | |

uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); | |

if (isSingleWord()) | |

VAL &= mask; | |

else | |

pVal[getNumWords() - 1] &= mask; | |

return *this; | |

} | |

/// \brief Get the word corresponding to a bit position | |

/// \returns the corresponding word for the specified bit position. | |

uint64_t getWord(unsigned bitPosition) const { | |

return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; | |

} | |

/// \brief Convert a char array into an APInt | |

/// | |

/// \param radix 2, 8, 10, 16, or 36 | |

/// Converts a string into a number. The string must be non-empty | |

/// and well-formed as a number of the given base. The bit-width | |

/// must be sufficient to hold the result. | |

/// | |

/// This is used by the constructors that take string arguments. | |

/// | |

/// StringRef::getAsInteger is superficially similar but (1) does | |

/// not assume that the string is well-formed and (2) grows the | |

/// result to hold the input. | |

void fromString(unsigned numBits, StringRef str, uint8_t radix); | |

/// \brief An internal division function for dividing APInts. | |

/// | |

/// This is used by the toString method to divide by the radix. It simply | |

/// provides a more convenient form of divide for internal use since KnuthDiv | |

/// has specific constraints on its inputs. If those constraints are not met | |

/// then it provides a simpler form of divide. | |

static void divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, | |

unsigned rhsWords, APInt *Quotient, APInt *Remainder); | |

/// out-of-line slow case for inline constructor | |

void initSlowCase(uint64_t val, bool isSigned); | |

/// shared code between two array constructors | |

void initFromArray(ArrayRef<uint64_t> array); | |

/// out-of-line slow case for inline copy constructor | |

void initSlowCase(const APInt &that); | |

/// out-of-line slow case for shl | |

APInt shlSlowCase(unsigned shiftAmt) const; | |

/// out-of-line slow case for operator& | |

APInt AndSlowCase(const APInt &RHS) const; | |

/// out-of-line slow case for operator| | |

APInt OrSlowCase(const APInt &RHS) const; | |

/// out-of-line slow case for operator^ | |

APInt XorSlowCase(const APInt &RHS) const; | |

/// out-of-line slow case for operator= | |

APInt &AssignSlowCase(const APInt &RHS); | |

/// out-of-line slow case for operator== | |

bool EqualSlowCase(const APInt &RHS) const; | |

/// out-of-line slow case for operator== | |

bool EqualSlowCase(uint64_t Val) const; | |

/// out-of-line slow case for countLeadingZeros | |

unsigned countLeadingZerosSlowCase() const; | |

/// out-of-line slow case for countTrailingOnes | |

unsigned countTrailingOnesSlowCase() const; | |

/// out-of-line slow case for countPopulation | |

unsigned countPopulationSlowCase() const; | |

public: | |

/// \name Constructors | |

/// @{ | |

/// \brief Create a new APInt of numBits width, initialized as val. | |

/// | |

/// If isSigned is true then val is treated as if it were a signed value | |

/// (i.e. as an int64_t) and the appropriate sign extension to the bit width | |

/// will be done. Otherwise, no sign extension occurs (high order bits beyond | |

/// the range of val are zero filled). | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param val the initial value of the APInt | |

/// \param isSigned how to treat signedness of val | |

APInt(unsigned numBits, uint64_t val, bool isSigned = false) | |

: BitWidth(numBits), VAL(0) { | |

assert(BitWidth && "bitwidth too small"); | |

if (isSingleWord()) | |

VAL = val; | |

else | |

initSlowCase(val, isSigned); | |

clearUnusedBits(); | |

} | |

/// \brief Construct an APInt of numBits width, initialized as bigVal[]. | |

/// | |

/// Note that bigVal.size() can be smaller or larger than the corresponding | |

/// bit width but any extraneous bits will be dropped. | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param bigVal a sequence of words to form the initial value of the APInt | |

APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); | |

/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but | |

/// deprecated because this constructor is prone to ambiguity with the | |

/// APInt(unsigned, uint64_t, bool) constructor. | |

/// | |

/// If this overload is ever deleted, care should be taken to prevent calls | |

/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) | |

/// constructor. | |

APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); | |

/// \brief Construct an APInt from a string representation. | |

/// | |

/// This constructor interprets the string \p str in the given radix. The | |

/// interpretation stops when the first character that is not suitable for the | |

/// radix is encountered, or the end of the string. Acceptable radix values | |

/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the | |

/// string to require more bits than numBits. | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param str the string to be interpreted | |

/// \param radix the radix to use for the conversion | |

APInt(unsigned numBits, StringRef str, uint8_t radix); | |

/// Simply makes *this a copy of that. | |

/// @brief Copy Constructor. | |

APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) { | |

if (isSingleWord()) | |

VAL = that.VAL; | |

else | |

initSlowCase(that); | |

} | |

/// \brief Move Constructor. | |

APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) { | |

that.BitWidth = 0; | |

} | |

/// \brief Destructor. | |

~APInt() { | |

if (needsCleanup()) | |

delete[] pVal; | |

} | |

/// \brief Default constructor that creates an uninteresting APInt | |

/// representing a 1-bit zero value. | |

/// | |

/// This is useful for object deserialization (pair this with the static | |

/// method Read). | |

explicit APInt() : BitWidth(1), VAL(0) {} | |

/// \brief Returns whether this instance allocated memory. | |

bool needsCleanup() const { return !isSingleWord(); } | |

/// Used to insert APInt objects, or objects that contain APInt objects, into | |

/// FoldingSets. | |

void Profile(FoldingSetNodeID &id) const; | |

/// @} | |

/// \name Value Tests | |

/// @{ | |

/// \brief Determine sign of this APInt. | |

/// | |

/// This tests the high bit of this APInt to determine if it is set. | |

/// | |

/// \returns true if this APInt is negative, false otherwise | |

bool isNegative() const { return (*this)[BitWidth - 1]; } | |

/// \brief Determine if this APInt Value is non-negative (>= 0) | |

/// | |

/// This tests the high bit of the APInt to determine if it is unset. | |

bool isNonNegative() const { return !isNegative(); } | |

/// \brief Determine if this APInt Value is positive. | |

/// | |

/// This tests if the value of this APInt is positive (> 0). Note | |

/// that 0 is not a positive value. | |

/// | |

/// \returns true if this APInt is positive. | |

bool isStrictlyPositive() const { return isNonNegative() && !!*this; } | |

/// \brief Determine if all bits are set | |

/// | |

/// This checks to see if the value has all bits of the APInt are set or not. | |

bool isAllOnesValue() const { | |

if (isSingleWord()) | |

return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth); | |

return countPopulationSlowCase() == BitWidth; | |

} | |

/// \brief Determine if this is the largest unsigned value. | |

/// | |

/// This checks to see if the value of this APInt is the maximum unsigned | |

/// value for the APInt's bit width. | |

bool isMaxValue() const { return isAllOnesValue(); } | |

/// \brief Determine if this is the largest signed value. | |

/// | |

/// This checks to see if the value of this APInt is the maximum signed | |

/// value for the APInt's bit width. | |

bool isMaxSignedValue() const { | |

return !isNegative() && countPopulation() == BitWidth - 1; | |

} | |

/// \brief Determine if this is the smallest unsigned value. | |

/// | |

/// This checks to see if the value of this APInt is the minimum unsigned | |

/// value for the APInt's bit width. | |

bool isMinValue() const { return !*this; } | |

/// \brief Determine if this is the smallest signed value. | |

/// | |

/// This checks to see if the value of this APInt is the minimum signed | |

/// value for the APInt's bit width. | |

bool isMinSignedValue() const { | |

return isNegative() && isPowerOf2(); | |

} | |

/// \brief Check if this APInt has an N-bits unsigned integer value. | |

bool isIntN(unsigned N) const { | |

assert(N && "N == 0 ???"); | |

return getActiveBits() <= N; | |

} | |

/// \brief Check if this APInt has an N-bits signed integer value. | |

bool isSignedIntN(unsigned N) const { | |

assert(N && "N == 0 ???"); | |

return getMinSignedBits() <= N; | |

} | |

/// \brief Check if this APInt's value is a power of two greater than zero. | |

/// | |

/// \returns true if the argument APInt value is a power of two > 0. | |

bool isPowerOf2() const { | |

if (isSingleWord()) | |

return isPowerOf2_64(VAL); | |

return countPopulationSlowCase() == 1; | |

} | |

/// \brief Check if the APInt's value is returned by getSignBit. | |

/// | |

/// \returns true if this is the value returned by getSignBit. | |

bool isSignBit() const { return isMinSignedValue(); } | |

/// \brief Convert APInt to a boolean value. | |

/// | |

/// This converts the APInt to a boolean value as a test against zero. | |

bool getBoolValue() const { return !!*this; } | |

/// If this value is smaller than the specified limit, return it, otherwise | |

/// return the limit value. This causes the value to saturate to the limit. | |

uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { | |

return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit | |

: getZExtValue(); | |

} | |

/// \brief Check if the APInt consists of a repeated bit pattern. | |

/// | |

/// e.g. 0x01010101 satisfies isSplat(8). | |

/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit | |

/// width without remainder. | |

bool isSplat(unsigned SplatSizeInBits) const; | |

/// @} | |

/// \name Value Generators | |

/// @{ | |

/// \brief Gets maximum unsigned value of APInt for specific bit width. | |

static APInt getMaxValue(unsigned numBits) { | |

return getAllOnesValue(numBits); | |

} | |

/// \brief Gets maximum signed value of APInt for a specific bit width. | |

static APInt getSignedMaxValue(unsigned numBits) { | |

APInt API = getAllOnesValue(numBits); | |

API.clearBit(numBits - 1); | |

return API; | |

} | |

/// \brief Gets minimum unsigned value of APInt for a specific bit width. | |

static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } | |

/// \brief Gets minimum signed value of APInt for a specific bit width. | |

static APInt getSignedMinValue(unsigned numBits) { | |

APInt API(numBits, 0); | |

API.setBit(numBits - 1); | |

return API; | |

} | |

/// \brief Get the SignBit for a specific bit width. | |

/// | |

/// This is just a wrapper function of getSignedMinValue(), and it helps code | |

/// readability when we want to get a SignBit. | |

static APInt getSignBit(unsigned BitWidth) { | |

return getSignedMinValue(BitWidth); | |

} | |

/// \brief Get the all-ones value. | |

/// | |

/// \returns the all-ones value for an APInt of the specified bit-width. | |

static APInt getAllOnesValue(unsigned numBits) { | |

return APInt(numBits, UINT64_MAX, true); | |

} | |

/// \brief Get the '0' value. | |

/// | |

/// \returns the '0' value for an APInt of the specified bit-width. | |

static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } | |

/// \brief Compute an APInt containing numBits highbits from this APInt. | |

/// | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the low bits and right shift to the least significant bit. | |

/// | |

/// \returns the high "numBits" bits of this APInt. | |

APInt getHiBits(unsigned numBits) const; | |

/// \brief Compute an APInt containing numBits lowbits from this APInt. | |

/// | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the high bits. | |

/// | |

/// \returns the low "numBits" bits of this APInt. | |

APInt getLoBits(unsigned numBits) const; | |

/// \brief Return an APInt with exactly one bit set in the result. | |

static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { | |

APInt Res(numBits, 0); | |

Res.setBit(BitNo); | |

return Res; | |

} | |

/// \brief Get a value with a block of bits set. | |

/// | |

/// Constructs an APInt value that has a contiguous range of bits set. The | |

/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other | |

/// bits will be zero. For example, with parameters(32, 0, 16) you would get | |

/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For | |

/// example, with parameters (32, 28, 4), you would get 0xF000000F. | |

/// | |

/// \param numBits the intended bit width of the result | |

/// \param loBit the index of the lowest bit set. | |

/// \param hiBit the index of the highest bit set. | |

/// | |

/// \returns An APInt value with the requested bits set. | |

static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { | |

assert(hiBit <= numBits && "hiBit out of range"); | |

assert(loBit < numBits && "loBit out of range"); | |

if (hiBit < loBit) | |

return getLowBitsSet(numBits, hiBit) | | |

getHighBitsSet(numBits, numBits - loBit); | |

return getLowBitsSet(numBits, hiBit - loBit).shl(loBit); | |

} | |

/// \brief Get a value with high bits set | |

/// | |

/// Constructs an APInt value that has the top hiBitsSet bits set. | |

/// | |

/// \param numBits the bitwidth of the result | |

/// \param hiBitsSet the number of high-order bits set in the result. | |

static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { | |

assert(hiBitsSet <= numBits && "Too many bits to set!"); | |

// Handle a degenerate case, to avoid shifting by word size | |

if (hiBitsSet == 0) | |

return APInt(numBits, 0); | |

unsigned shiftAmt = numBits - hiBitsSet; | |

// For small values, return quickly | |

if (numBits <= APINT_BITS_PER_WORD) | |

return APInt(numBits, ~0ULL << shiftAmt); | |

return getAllOnesValue(numBits).shl(shiftAmt); | |

} | |

/// \brief Get a value with low bits set | |

/// | |

/// Constructs an APInt value that has the bottom loBitsSet bits set. | |

/// | |

/// \param numBits the bitwidth of the result | |

/// \param loBitsSet the number of low-order bits set in the result. | |

static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { | |

assert(loBitsSet <= numBits && "Too many bits to set!"); | |

// Handle a degenerate case, to avoid shifting by word size | |

if (loBitsSet == 0) | |

return APInt(numBits, 0); | |

if (loBitsSet == APINT_BITS_PER_WORD) | |

return APInt(numBits, UINT64_MAX); | |

// For small values, return quickly. | |

if (loBitsSet <= APINT_BITS_PER_WORD) | |

return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet)); | |

return getAllOnesValue(numBits).lshr(numBits - loBitsSet); | |

} | |

/// \brief Return a value containing V broadcasted over NewLen bits. | |

static APInt getSplat(unsigned NewLen, const APInt &V) { | |

assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); | |

APInt Val = V.zextOrSelf(NewLen); | |

for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) | |

Val |= Val << I; | |

return Val; | |

} | |

/// \brief Determine if two APInts have the same value, after zero-extending | |

/// one of them (if needed!) to ensure that the bit-widths match. | |

static bool isSameValue(const APInt &I1, const APInt &I2) { | |

if (I1.getBitWidth() == I2.getBitWidth()) | |

return I1 == I2; | |

if (I1.getBitWidth() > I2.getBitWidth()) | |

return I1 == I2.zext(I1.getBitWidth()); | |

return I1.zext(I2.getBitWidth()) == I2; | |

} | |

/// \brief Overload to compute a hash_code for an APInt value. | |

friend hash_code hash_value(const APInt &Arg); | |

/// This function returns a pointer to the internal storage of the APInt. | |

/// This is useful for writing out the APInt in binary form without any | |

/// conversions. | |

const uint64_t *getRawData() const { | |

if (isSingleWord()) | |

return &VAL; | |

return &pVal[0]; | |

} | |

/// @} | |

/// \name Unary Operators | |

/// @{ | |

/// \brief Postfix increment operator. | |

/// | |

/// \returns a new APInt value representing *this incremented by one | |

const APInt operator++(int) { | |

APInt API(*this); | |

++(*this); | |

return API; | |

} | |

/// \brief Prefix increment operator. | |

/// | |

/// \returns *this incremented by one | |

APInt &operator++(); | |

/// \brief Postfix decrement operator. | |

/// | |

/// \returns a new APInt representing *this decremented by one. | |

const APInt operator--(int) { | |

APInt API(*this); | |

--(*this); | |

return API; | |

} | |

/// \brief Prefix decrement operator. | |

/// | |

/// \returns *this decremented by one. | |

APInt &operator--(); | |

/// \brief Unary bitwise complement operator. | |

/// | |

/// Performs a bitwise complement operation on this APInt. | |

/// | |

/// \returns an APInt that is the bitwise complement of *this | |

APInt operator~() const { | |

APInt Result(*this); | |

Result.flipAllBits(); | |

return Result; | |

} | |

/// \brief Logical negation operator. | |

/// | |

/// Performs logical negation operation on this APInt. | |

/// | |

/// \returns true if *this is zero, false otherwise. | |

bool operator!() const { | |

if (isSingleWord()) | |

return !VAL; | |

for (unsigned i = 0; i != getNumWords(); ++i) | |

if (pVal[i]) | |

return false; | |

return true; | |

} | |

/// @} | |

/// \name Assignment Operators | |

/// @{ | |

/// \brief Copy assignment operator. | |

/// | |

/// \returns *this after assignment of RHS. | |

APInt &operator=(const APInt &RHS) { | |

// If the bitwidths are the same, we can avoid mucking with memory | |

if (isSingleWord() && RHS.isSingleWord()) { | |

VAL = RHS.VAL; | |

BitWidth = RHS.BitWidth; | |

return clearUnusedBits(); | |

} | |

return AssignSlowCase(RHS); | |

} | |

/// @brief Move assignment operator. | |

APInt &operator=(APInt &&that) { | |

if (!isSingleWord()) { | |

// The MSVC STL shipped in 2013 requires that self move assignment be a | |

// no-op. Otherwise algorithms like stable_sort will produce answers | |

// where half of the output is left in a moved-from state. | |

if (this == &that) | |

return *this; | |

delete[] pVal; | |

} | |

// Use memcpy so that type based alias analysis sees both VAL and pVal | |

// as modified. | |

memcpy(&VAL, &that.VAL, sizeof(uint64_t)); | |

// If 'this == &that', avoid zeroing our own bitwidth by storing to 'that' | |

// first. | |

unsigned ThatBitWidth = that.BitWidth; | |

that.BitWidth = 0; | |

BitWidth = ThatBitWidth; | |

return *this; | |

} | |

/// \brief Assignment operator. | |

/// | |

/// The RHS value is assigned to *this. If the significant bits in RHS exceed | |

/// the bit width, the excess bits are truncated. If the bit width is larger | |

/// than 64, the value is zero filled in the unspecified high order bits. | |

/// | |

/// \returns *this after assignment of RHS value. | |

APInt &operator=(uint64_t RHS); | |

/// \brief Bitwise AND assignment operator. | |

/// | |

/// Performs a bitwise AND operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// | |

/// \returns *this after ANDing with RHS. | |

APInt &operator&=(const APInt &RHS); | |

/// \brief Bitwise OR assignment operator. | |

/// | |

/// Performs a bitwise OR operation on this APInt and RHS. The result is | |

/// assigned *this; | |

/// | |

/// \returns *this after ORing with RHS. | |

APInt &operator|=(const APInt &RHS); | |

/// \brief Bitwise OR assignment operator. | |

/// | |

/// Performs a bitwise OR operation on this APInt and RHS. RHS is | |

/// logically zero-extended or truncated to match the bit-width of | |

/// the LHS. | |

APInt &operator|=(uint64_t RHS) { | |

if (isSingleWord()) { | |

VAL |= RHS; | |

clearUnusedBits(); | |

} else { | |

pVal[0] |= RHS; | |

} | |

return *this; | |

} | |

/// \brief Bitwise XOR assignment operator. | |

/// | |

/// Performs a bitwise XOR operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// | |

/// \returns *this after XORing with RHS. | |

APInt &operator^=(const APInt &RHS); | |

/// \brief Multiplication assignment operator. | |

/// | |

/// Multiplies this APInt by RHS and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator*=(const APInt &RHS); | |

/// \brief Addition assignment operator. | |

/// | |

/// Adds RHS to *this and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator+=(const APInt &RHS); | |

APInt &operator+=(uint64_t RHS); | |

/// \brief Subtraction assignment operator. | |

/// | |

/// Subtracts RHS from *this and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator-=(const APInt &RHS); | |

APInt &operator-=(uint64_t RHS); | |

/// \brief Left-shift assignment function. | |

/// | |

/// Shifts *this left by shiftAmt and assigns the result to *this. | |

/// | |

/// \returns *this after shifting left by shiftAmt | |

APInt &operator<<=(unsigned shiftAmt) { | |

*this = shl(shiftAmt); | |

return *this; | |

} | |

/// @} | |

/// \name Binary Operators | |

/// @{ | |

/// \brief Bitwise AND operator. | |

/// | |

/// Performs a bitwise AND operation on *this and RHS. | |

/// | |

/// \returns An APInt value representing the bitwise AND of *this and RHS. | |

APInt operator&(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

return APInt(getBitWidth(), VAL & RHS.VAL); | |

return AndSlowCase(RHS); | |

} | |

APInt And(const APInt &RHS) const { return this->operator&(RHS); } | |

/// \brief Bitwise OR operator. | |

/// | |

/// Performs a bitwise OR operation on *this and RHS. | |

/// | |

/// \returns An APInt value representing the bitwise OR of *this and RHS. | |

APInt operator|(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

return APInt(getBitWidth(), VAL | RHS.VAL); | |

return OrSlowCase(RHS); | |

} | |

/// \brief Bitwise OR function. | |

/// | |

/// Performs a bitwise or on *this and RHS. This is implemented by simply | |

/// calling operator|. | |

/// | |

/// \returns An APInt value representing the bitwise OR of *this and RHS. | |

APInt Or(const APInt &RHS) const { return this->operator|(RHS); } | |

/// \brief Bitwise XOR operator. | |

/// | |

/// Performs a bitwise XOR operation on *this and RHS. | |

/// | |

/// \returns An APInt value representing the bitwise XOR of *this and RHS. | |

APInt operator^(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

return APInt(BitWidth, VAL ^ RHS.VAL); | |

return XorSlowCase(RHS); | |

} | |

/// \brief Bitwise XOR function. | |

/// | |

/// Performs a bitwise XOR operation on *this and RHS. This is implemented | |

/// through the usage of operator^. | |

/// | |

/// \returns An APInt value representing the bitwise XOR of *this and RHS. | |

APInt Xor(const APInt &RHS) const { return this->operator^(RHS); } | |

/// \brief Multiplication operator. | |

/// | |

/// Multiplies this APInt by RHS and returns the result. | |

APInt operator*(const APInt &RHS) const; | |

/// \brief Left logical shift operator. | |

/// | |

/// Shifts this APInt left by \p Bits and returns the result. | |

APInt operator<<(unsigned Bits) const { return shl(Bits); } | |

/// \brief Left logical shift operator. | |

/// | |

/// Shifts this APInt left by \p Bits and returns the result. | |

APInt operator<<(const APInt &Bits) const { return shl(Bits); } | |

/// \brief Arithmetic right-shift function. | |

/// | |

/// Arithmetic right-shift this APInt by shiftAmt. | |

APInt ashr(unsigned shiftAmt) const; | |

/// \brief Logical right-shift function. | |

/// | |

/// Logical right-shift this APInt by shiftAmt. | |

APInt lshr(unsigned shiftAmt) const; | |

/// \brief Left-shift function. | |

/// | |

/// Left-shift this APInt by shiftAmt. | |

APInt shl(unsigned shiftAmt) const { | |

assert(shiftAmt <= BitWidth && "Invalid shift amount"); | |

if (isSingleWord()) { | |

if (shiftAmt >= BitWidth) | |

return APInt(BitWidth, 0); // avoid undefined shift results | |

return APInt(BitWidth, VAL << shiftAmt); | |

} | |

return shlSlowCase(shiftAmt); | |

} | |

/// \brief Rotate left by rotateAmt. | |

APInt rotl(unsigned rotateAmt) const; | |

/// \brief Rotate right by rotateAmt. | |

APInt rotr(unsigned rotateAmt) const; | |

/// \brief Arithmetic right-shift function. | |

/// | |

/// Arithmetic right-shift this APInt by shiftAmt. | |

APInt ashr(const APInt &shiftAmt) const; | |

/// \brief Logical right-shift function. | |

/// | |

/// Logical right-shift this APInt by shiftAmt. | |

APInt lshr(const APInt &shiftAmt) const; | |

/// \brief Left-shift function. | |

/// | |

/// Left-shift this APInt by shiftAmt. | |

APInt shl(const APInt &shiftAmt) const; | |

/// \brief Rotate left by rotateAmt. | |

APInt rotl(const APInt &rotateAmt) const; | |

/// \brief Rotate right by rotateAmt. | |

APInt rotr(const APInt &rotateAmt) const; | |

/// \brief Unsigned division operation. | |

/// | |

/// Perform an unsigned divide operation on this APInt by RHS. Both this and | |

/// RHS are treated as unsigned quantities for purposes of this division. | |

/// | |

/// \returns a new APInt value containing the division result | |

APInt udiv(const APInt &RHS) const; | |

/// \brief Signed division function for APInt. | |

/// | |

/// Signed divide this APInt by APInt RHS. | |

APInt sdiv(const APInt &RHS) const; | |

/// \brief Unsigned remainder operation. | |

/// | |

/// Perform an unsigned remainder operation on this APInt with RHS being the | |

/// divisor. Both this and RHS are treated as unsigned quantities for purposes | |

/// of this operation. Note that this is a true remainder operation and not a | |

/// modulo operation because the sign follows the sign of the dividend which | |

/// is *this. | |

/// | |

/// \returns a new APInt value containing the remainder result | |

APInt urem(const APInt &RHS) const; | |

/// \brief Function for signed remainder operation. | |

/// | |

/// Signed remainder operation on APInt. | |

APInt srem(const APInt &RHS) const; | |

/// \brief Dual division/remainder interface. | |

/// | |

/// Sometimes it is convenient to divide two APInt values and obtain both the | |

/// quotient and remainder. This function does both operations in the same | |

/// computation making it a little more efficient. The pair of input arguments | |

/// may overlap with the pair of output arguments. It is safe to call | |

/// udivrem(X, Y, X, Y), for example. | |

static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |

APInt &Remainder); | |

static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |

APInt &Remainder); | |

// Operations that return overflow indicators. | |

APInt sadd_ov(const APInt &RHS, bool &Overflow) const; | |

APInt uadd_ov(const APInt &RHS, bool &Overflow) const; | |

APInt ssub_ov(const APInt &RHS, bool &Overflow) const; | |

APInt usub_ov(const APInt &RHS, bool &Overflow) const; | |

APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; | |

APInt smul_ov(const APInt &RHS, bool &Overflow) const; | |

APInt umul_ov(const APInt &RHS, bool &Overflow) const; | |

APInt sshl_ov(const APInt &Amt, bool &Overflow) const; | |

APInt ushl_ov(const APInt &Amt, bool &Overflow) const; | |

/// \brief Array-indexing support. | |

/// | |

/// \returns the bit value at bitPosition | |

bool operator[](unsigned bitPosition) const { | |

assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); | |

return (maskBit(bitPosition) & | |

(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != | |

0; | |

} | |

/// @} | |

/// \name Comparison Operators | |

/// @{ | |

/// \brief Equality operator. | |

/// | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

bool operator==(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); | |

if (isSingleWord()) | |

return VAL == RHS.VAL; | |

return EqualSlowCase(RHS); | |

} | |

/// \brief Equality operator. | |

/// | |

/// Compares this APInt with a uint64_t for the validity of the equality | |

/// relationship. | |

/// | |

/// \returns true if *this == Val | |

bool operator==(uint64_t Val) const { | |

if (isSingleWord()) | |

return VAL == Val; | |

return EqualSlowCase(Val); | |

} | |

/// \brief Equality comparison. | |

/// | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

/// | |

/// \returns true if *this == Val | |

bool eq(const APInt &RHS) const { return (*this) == RHS; } | |

/// \brief Inequality operator. | |

/// | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } | |

/// \brief Inequality operator. | |

/// | |

/// Compares this APInt with a uint64_t for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool operator!=(uint64_t Val) const { return !((*this) == Val); } | |

/// \brief Inequality comparison | |

/// | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool ne(const APInt &RHS) const { return !((*this) == RHS); } | |

/// \brief Unsigned less than comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when both are considered unsigned. | |

bool ult(const APInt &RHS) const; | |

/// \brief Unsigned less than comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when considered unsigned. | |

bool ult(uint64_t RHS) const { | |

return getActiveBits() > 64 ? false : getZExtValue() < RHS; | |

} | |

/// \brief Signed less than comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when both are considered signed. | |

bool slt(const APInt &RHS) const; | |

/// \brief Signed less than comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when considered signed. | |

bool slt(int64_t RHS) const { | |

return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS; | |

} | |

/// \brief Unsigned less or equal comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when both are considered unsigned. | |

bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); } | |

/// \brief Unsigned less or equal comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when considered unsigned. | |

bool ule(uint64_t RHS) const { return !ugt(RHS); } | |

/// \brief Signed less or equal comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when both are considered signed. | |

bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); } | |

/// \brief Signed less or equal comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for the | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when considered signed. | |

bool sle(uint64_t RHS) const { return !sgt(RHS); } | |

/// \brief Unsigned greather than comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when both are considered unsigned. | |

bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); } | |

/// \brief Unsigned greater than comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when considered unsigned. | |

bool ugt(uint64_t RHS) const { | |

return getActiveBits() > 64 ? true : getZExtValue() > RHS; | |

} | |

/// \brief Signed greather than comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for the | |

/// validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when both are considered signed. | |

bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); } | |

/// \brief Signed greater than comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when considered signed. | |

bool sgt(int64_t RHS) const { | |

return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS; | |

} | |

/// \brief Unsigned greater or equal comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when both are considered unsigned. | |

bool uge(const APInt &RHS) const { return !ult(RHS); } | |

/// \brief Unsigned greater or equal comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when considered unsigned. | |

bool uge(uint64_t RHS) const { return !ult(RHS); } | |

/// \brief Signed greather or equal comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when both are considered signed. | |

bool sge(const APInt &RHS) const { return !slt(RHS); } | |

/// \brief Signed greater or equal comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when considered signed. | |

bool sge(int64_t RHS) const { return !slt(RHS); } | |

/// This operation tests if there are any pairs of corresponding bits | |

/// between this APInt and RHS that are both set. | |

bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } | |

/// @} | |

/// \name Resizing Operators | |

/// @{ | |

/// \brief Truncate to new width. | |

/// | |

/// Truncate the APInt to a specified width. It is an error to specify a width | |

/// that is greater than or equal to the current width. | |

APInt trunc(unsigned width) const; | |

/// \brief Sign extend to a new width. | |

/// | |

/// This operation sign extends the APInt to a new width. If the high order | |

/// bit is set, the fill on the left will be done with 1 bits, otherwise zero. | |

/// It is an error to specify a width that is less than or equal to the | |

/// current width. | |

APInt sext(unsigned width) const; | |

/// \brief Zero extend to a new width. | |

/// | |

/// This operation zero extends the APInt to a new width. The high order bits | |

/// are filled with 0 bits. It is an error to specify a width that is less | |

/// than or equal to the current width. | |

APInt zext(unsigned width) const; | |

/// \brief Sign extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is sign | |

/// extended, truncated, or left alone to make it that width. | |

APInt sextOrTrunc(unsigned width) const; | |

/// \brief Zero extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is zero | |

/// extended, truncated, or left alone to make it that width. | |

APInt zextOrTrunc(unsigned width) const; | |

/// \brief Sign extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is sign | |

/// extended, or left alone to make it that width. | |

APInt sextOrSelf(unsigned width) const; | |

/// \brief Zero extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is zero | |

/// extended, or left alone to make it that width. | |

APInt zextOrSelf(unsigned width) const; | |

/// @} | |

/// \name Bit Manipulation Operators | |

/// @{ | |

/// \brief Set every bit to 1. | |

void setAllBits() { | |

if (isSingleWord()) | |

VAL = UINT64_MAX; | |

else { | |

// Set all the bits in all the words. | |

for (unsigned i = 0; i < getNumWords(); ++i) | |

pVal[i] = UINT64_MAX; | |

} | |

// Clear the unused ones | |

clearUnusedBits(); | |

} | |

/// \brief Set a given bit to 1. | |

/// | |

/// Set the given bit to 1 whose position is given as "bitPosition". | |

void setBit(unsigned bitPosition); | |

/// \brief Set every bit to 0. | |

void clearAllBits() { | |

if (isSingleWord()) | |

VAL = 0; | |

else | |

memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); | |

} | |

/// \brief Set a given bit to 0. | |

/// | |

/// Set the given bit to 0 whose position is given as "bitPosition". | |

void clearBit(unsigned bitPosition); | |

/// \brief Toggle every bit to its opposite value. | |

void flipAllBits() { | |

if (isSingleWord()) | |

VAL ^= UINT64_MAX; | |

else { | |

for (unsigned i = 0; i < getNumWords(); ++i) | |

pVal[i] ^= UINT64_MAX; | |

} | |

clearUnusedBits(); | |

} | |

/// \brief Toggles a given bit to its opposite value. | |

/// | |

/// Toggle a given bit to its opposite value whose position is given | |

/// as "bitPosition". | |

void flipBit(unsigned bitPosition); | |

/// @} | |

/// \name Value Characterization Functions | |

/// @{ | |

/// \brief Return the number of bits in the APInt. | |

unsigned getBitWidth() const { return BitWidth; } | |

/// \brief Get the number of words. | |

/// | |

/// Here one word's bitwidth equals to that of uint64_t. | |

/// | |

/// \returns the number of words to hold the integer value of this APInt. | |

unsigned getNumWords() const { return getNumWords(BitWidth); } | |

/// \brief Get the number of words. | |

/// | |

/// *NOTE* Here one word's bitwidth equals to that of uint64_t. | |

/// | |

/// \returns the number of words to hold the integer value with a given bit | |

/// width. | |

static unsigned getNumWords(unsigned BitWidth) { | |

return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | |

} | |

/// \brief Compute the number of active bits in the value | |

/// | |

/// This function returns the number of active bits which is defined as the | |

/// bit width minus the number of leading zeros. This is used in several | |

/// computations to see how "wide" the value is. | |

unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } | |

/// \brief Compute the number of active words in the value of this APInt. | |

/// | |

/// This is used in conjunction with getActiveData to extract the raw value of | |

/// the APInt. | |

unsigned getActiveWords() const { | |

unsigned numActiveBits = getActiveBits(); | |

return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; | |

} | |

/// \brief Get the minimum bit size for this signed APInt | |

/// | |

/// Computes the minimum bit width for this APInt while considering it to be a | |

/// signed (and probably negative) value. If the value is not negative, this | |

/// function returns the same value as getActiveBits()+1. Otherwise, it | |

/// returns the smallest bit width that will retain the negative value. For | |

/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so | |

/// for -1, this function will always return 1. | |

unsigned getMinSignedBits() const { | |

if (isNegative()) | |

return BitWidth - countLeadingOnes() + 1; | |

return getActiveBits() + 1; | |

} | |

/// \brief Get zero extended value | |

/// | |

/// This method attempts to return the value of this APInt as a zero extended | |

/// uint64_t. The bitwidth must be <= 64 or the value must fit within a | |

/// uint64_t. Otherwise an assertion will result. | |

uint64_t getZExtValue() const { | |

if (isSingleWord()) | |

return VAL; | |

assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); | |

return pVal[0]; | |

} | |

/// \brief Get sign extended value | |

/// | |

/// This method attempts to return the value of this APInt as a sign extended | |

/// int64_t. The bit width must be <= 64 or the value must fit within an | |

/// int64_t. Otherwise an assertion will result. | |

int64_t getSExtValue() const { | |

if (isSingleWord()) | |

return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> | |

(APINT_BITS_PER_WORD - BitWidth); | |

assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); | |

return int64_t(pVal[0]); | |

} | |

/// \brief Get bits required for string value. | |

/// | |

/// This method determines how many bits are required to hold the APInt | |

/// equivalent of the string given by \p str. | |

static unsigned getBitsNeeded(StringRef str, uint8_t radix); | |

/// \brief The APInt version of the countLeadingZeros functions in | |

/// MathExtras.h. | |

/// | |

/// It counts the number of zeros from the most significant bit to the first | |

/// one bit. | |

/// | |

/// \returns BitWidth if the value is zero, otherwise returns the number of | |

/// zeros from the most significant bit to the first one bits. | |

unsigned countLeadingZeros() const { | |

if (isSingleWord()) { | |

unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; | |

return llvm::countLeadingZeros(VAL) - unusedBits; | |

} | |

return countLeadingZerosSlowCase(); | |

} | |

/// \brief Count the number of leading one bits. | |

/// | |

/// This function is an APInt version of the countLeadingOnes | |

/// functions in MathExtras.h. It counts the number of ones from the most | |

/// significant bit to the first zero bit. | |

/// | |

/// \returns 0 if the high order bit is not set, otherwise returns the number | |

/// of 1 bits from the most significant to the least | |

unsigned countLeadingOnes() const; | |

/// Computes the number of leading bits of this APInt that are equal to its | |

/// sign bit. | |

unsigned getNumSignBits() const { | |

return isNegative() ? countLeadingOnes() : countLeadingZeros(); | |

} | |

/// \brief Count the number of trailing zero bits. | |

/// | |

/// This function is an APInt version of the countTrailingZeros | |

/// functions in MathExtras.h. It counts the number of zeros from the least | |

/// significant bit to the first set bit. | |

/// | |

/// \returns BitWidth if the value is zero, otherwise returns the number of | |

/// zeros from the least significant bit to the first one bit. | |

unsigned countTrailingZeros() const; | |

/// \brief Count the number of trailing one bits. | |

/// | |

/// This function is an APInt version of the countTrailingOnes | |

/// functions in MathExtras.h. It counts the number of ones from the least | |

/// significant bit to the first zero bit. | |

/// | |

/// \returns BitWidth if the value is all ones, otherwise returns the number | |

/// of ones from the least significant bit to the first zero bit. | |

unsigned countTrailingOnes() const { | |

if (isSingleWord()) | |

return llvm::countTrailingOnes(VAL); | |

return countTrailingOnesSlowCase(); | |

} | |

/// \brief Count the number of bits set. | |

/// | |

/// This function is an APInt version of the countPopulation functions | |

/// in MathExtras.h. It counts the number of 1 bits in the APInt value. | |

/// | |

/// \returns 0 if the value is zero, otherwise returns the number of set bits. | |

unsigned countPopulation() const { | |

if (isSingleWord()) | |

return llvm::countPopulation(VAL); | |

return countPopulationSlowCase(); | |

} | |

/// @} | |

/// \name Conversion Functions | |

/// @{ | |

void print(raw_ostream &OS, bool isSigned) const; | |

/// Converts an APInt to a string and append it to Str. Str is commonly a | |

/// SmallString. | |

void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, | |

bool formatAsCLiteral = false) const; | |

/// Considers the APInt to be unsigned and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10 16, or 36. | |

void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |

toString(Str, Radix, false, false); | |

} | |

/// Considers the APInt to be signed and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10, 16, or 36. | |

void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |

toString(Str, Radix, true, false); | |

} | |

/// \brief Return the APInt as a std::string. | |

/// | |

/// Note that this is an inefficient method. It is better to pass in a | |

/// SmallVector/SmallString to the methods above to avoid thrashing the heap | |

/// for the string. | |

std::string toString(unsigned Radix, bool Signed) const; | |

/// \returns a byte-swapped representation of this APInt Value. | |

APInt byteSwap() const; | |

/// \returns the value with the bit representation reversed of this APInt | |

/// Value. | |

APInt reverseBits() const; | |

/// \brief Converts this APInt to a double value. | |

double roundToDouble(bool isSigned) const; | |

/// \brief Converts this unsigned APInt to a double value. | |

double roundToDouble() const { return roundToDouble(false); } | |

/// \brief Converts this signed APInt to a double value. | |

double signedRoundToDouble() const { return roundToDouble(true); } | |

/// \brief Converts APInt bits to a double | |

/// | |

/// The conversion does not do a translation from integer to double, it just | |

/// re-interprets the bits as a double. Note that it is valid to do this on | |

/// any bit width. Exactly 64 bits will be translated. | |

double bitsToDouble() const { | |

union { | |

uint64_t I; | |

double D; | |

} T; | |

T.I = (isSingleWord() ? VAL : pVal[0]); | |

return T.D; | |

} | |

/// \brief Converts APInt bits to a double | |

/// | |

/// The conversion does not do a translation from integer to float, it just | |

/// re-interprets the bits as a float. Note that it is valid to do this on | |

/// any bit width. Exactly 32 bits will be translated. | |

float bitsToFloat() const { | |

union { | |

unsigned I; | |

float F; | |

} T; | |

T.I = unsigned((isSingleWord() ? VAL : pVal[0])); | |

return T.F; | |

} | |

/// \brief Converts a double to APInt bits. | |

/// | |

/// The conversion does not do a translation from double to integer, it just | |

/// re-interprets the bits of the double. | |

static APInt doubleToBits(double V) { | |

union { | |

uint64_t I; | |

double D; | |

} T; | |

T.D = V; | |

return APInt(sizeof T * CHAR_BIT, T.I); | |

} | |

/// \brief Converts a float to APInt bits. | |

/// | |

/// The conversion does not do a translation from float to integer, it just | |

/// re-interprets the bits of the float. | |

static APInt floatToBits(float V) { | |

union { | |

unsigned I; | |

float F; | |

} T; | |

T.F = V; | |

return APInt(sizeof T * CHAR_BIT, T.I); | |

} | |

/// @} | |

/// \name Mathematics Operations | |

/// @{ | |

/// \returns the floor log base 2 of this APInt. | |

unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); } | |

/// \returns the ceil log base 2 of this APInt. | |

unsigned ceilLogBase2() const { | |

APInt temp(*this); | |

--temp; | |

return BitWidth - temp.countLeadingZeros(); | |

} | |

/// \returns the nearest log base 2 of this APInt. Ties round up. | |

/// | |

/// NOTE: When we have a BitWidth of 1, we define: | |

/// | |

/// log2(0) = UINT32_MAX | |

/// log2(1) = 0 | |

/// | |

/// to get around any mathematical concerns resulting from | |

/// referencing 2 in a space where 2 does no exist. | |

unsigned nearestLogBase2() const { | |

// Special case when we have a bitwidth of 1. If VAL is 1, then we | |

// get 0. If VAL is 0, we get UINT64_MAX which gets truncated to | |

// UINT32_MAX. | |

if (BitWidth == 1) | |

return VAL - 1; | |

// Handle the zero case. | |

if (!getBoolValue()) | |

return UINT32_MAX; | |

// The non-zero case is handled by computing: | |

// | |

// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. | |

// | |

// where x[i] is referring to the value of the ith bit of x. | |

unsigned lg = logBase2(); | |

return lg + unsigned((*this)[lg - 1]); | |

} | |

/// \returns the log base 2 of this APInt if its an exact power of two, -1 | |

/// otherwise | |

int32_t exactLogBase2() const { | |

if (!isPowerOf2()) | |

return -1; | |

return logBase2(); | |

} | |

/// \brief Compute the square root | |

APInt sqrt() const; | |

/// \brief Get the absolute value; | |

/// | |

/// If *this is < 0 then return -(*this), otherwise *this; | |

APInt abs() const { | |

if (isNegative()) | |

return -(*this); | |

return *this; | |

} | |

/// \returns the multiplicative inverse for a given modulo. | |

APInt multiplicativeInverse(const APInt &modulo) const; | |

/// @} | |

/// \name Support for division by constant | |

/// @{ | |

/// Calculate the magic number for signed division by a constant. | |

struct ms; | |

ms magic() const; | |

/// Calculate the magic number for unsigned division by a constant. | |

struct mu; | |

mu magicu(unsigned LeadingZeros = 0) const; | |

/// @} | |

/// \name Building-block Operations for APInt and APFloat | |

/// @{ | |

// These building block operations operate on a representation of arbitrary | |

// precision, two's-complement, bignum integer values. They should be | |

// sufficient to implement APInt and APFloat bignum requirements. Inputs are | |

// generally a pointer to the base of an array of integer parts, representing | |

// an unsigned bignum, and a count of how many parts there are. | |

/// Sets the least significant part of a bignum to the input value, and zeroes | |

/// out higher parts. | |

static void tcSet(integerPart *, integerPart, unsigned int); | |

/// Assign one bignum to another. | |

static void tcAssign(integerPart *, const integerPart *, unsigned int); | |

/// Returns true if a bignum is zero, false otherwise. | |

static bool tcIsZero(const integerPart *, unsigned int); | |

/// Extract the given bit of a bignum; returns 0 or 1. Zero-based. | |

static int tcExtractBit(const integerPart *, unsigned int bit); | |

/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to | |

/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least | |

/// significant bit of DST. All high bits above srcBITS in DST are | |

/// zero-filled. | |

static void tcExtract(integerPart *, unsigned int dstCount, | |

const integerPart *, unsigned int srcBits, | |

unsigned int srcLSB); | |

/// Set the given bit of a bignum. Zero-based. | |

static void tcSetBit(integerPart *, unsigned int bit); | |

/// Clear the given bit of a bignum. Zero-based. | |

static void tcClearBit(integerPart *, unsigned int bit); | |

/// Returns the bit number of the least or most significant set bit of a | |

/// number. If the input number has no bits set -1U is returned. | |

static unsigned int tcLSB(const integerPart *, unsigned int); | |

static unsigned int tcMSB(const integerPart *parts, unsigned int n); | |

/// Negate a bignum in-place. | |

static void tcNegate(integerPart *, unsigned int); | |

/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |

static integerPart tcAdd(integerPart *, const integerPart *, | |

integerPart carry, unsigned); | |

/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |

static integerPart tcSubtract(integerPart *, const integerPart *, | |

integerPart carry, unsigned); | |

/// DST += SRC * MULTIPLIER + PART if add is true | |

/// DST = SRC * MULTIPLIER + PART if add is false | |

/// | |

/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must | |

/// start at the same point, i.e. DST == SRC. | |

/// | |

/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. | |

/// Otherwise DST is filled with the least significant DSTPARTS parts of the | |

/// result, and if all of the omitted higher parts were zero return zero, | |

/// otherwise overflow occurred and return one. | |

static int tcMultiplyPart(integerPart *dst, const integerPart *src, | |

integerPart multiplier, integerPart carry, | |

unsigned int srcParts, unsigned int dstParts, | |

bool add); | |

/// DST = LHS * RHS, where DST has the same width as the operands and is | |

/// filled with the least significant parts of the result. Returns one if | |

/// overflow occurred, otherwise zero. DST must be disjoint from both | |

/// operands. | |

static int tcMultiply(integerPart *, const integerPart *, const integerPart *, | |

unsigned); | |

/// DST = LHS * RHS, where DST has width the sum of the widths of the | |

/// operands. No overflow occurs. DST must be disjoint from both | |

/// operands. Returns the number of parts required to hold the result. | |

static unsigned int tcFullMultiply(integerPart *, const integerPart *, | |

const integerPart *, unsigned, unsigned); | |

/// If RHS is zero LHS and REMAINDER are left unchanged, return one. | |

/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set | |

/// REMAINDER to the remainder, return zero. i.e. | |

/// | |

/// OLD_LHS = RHS * LHS + REMAINDER | |

/// | |

/// SCRATCH is a bignum of the same size as the operands and result for use by | |

/// the routine; its contents need not be initialized and are destroyed. LHS, | |

/// REMAINDER and SCRATCH must be distinct. | |

static int tcDivide(integerPart *lhs, const integerPart *rhs, | |

integerPart *remainder, integerPart *scratch, | |

unsigned int parts); | |

/// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no | |

/// restrictions on COUNT. | |

static void tcShiftLeft(integerPart *, unsigned int parts, | |

unsigned int count); | |

/// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no | |

/// restrictions on COUNT. | |

static void tcShiftRight(integerPart *, unsigned int parts, | |

unsigned int count); | |

/// The obvious AND, OR and XOR and complement operations. | |

static void tcAnd(integerPart *, const integerPart *, unsigned int); | |

static void tcOr(integerPart *, const integerPart *, unsigned int); | |

static void tcXor(integerPart *, const integerPart *, unsigned int); | |

static void tcComplement(integerPart *, unsigned int); | |

/// Comparison (unsigned) of two bignums. | |

static int tcCompare(const integerPart *, const integerPart *, unsigned int); | |

/// Increment a bignum in-place. Return the carry flag. | |

static integerPart tcIncrement(integerPart *, unsigned int); | |

/// Decrement a bignum in-place. Return the borrow flag. | |

static integerPart tcDecrement(integerPart *, unsigned int); | |

/// Set the least significant BITS and clear the rest. | |

static void tcSetLeastSignificantBits(integerPart *, unsigned int, | |

unsigned int bits); | |

/// \brief debug method | |

void dump() const; | |

/// @} | |

}; | |

/// Magic data for optimising signed division by a constant. | |

struct APInt::ms { | |

APInt m; ///< magic number | |

unsigned s; ///< shift amount | |

}; | |

/// Magic data for optimising unsigned division by a constant. | |

struct APInt::mu { | |

APInt m; ///< magic number | |

bool a; ///< add indicator | |

unsigned s; ///< shift amount | |

}; | |

inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } | |

inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } | |

inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { | |

I.print(OS, true); | |

return OS; | |

} | |

inline APInt operator-(APInt v) { | |

v.flipAllBits(); | |

++v; | |

return v; | |

} | |

inline APInt operator+(APInt a, const APInt &b) { | |

a += b; | |

return a; | |

} | |

inline APInt operator+(const APInt &a, APInt &&b) { | |

b += a; | |

return std::move(b); | |

} | |

inline APInt operator+(APInt a, uint64_t RHS) { | |

a += RHS; | |

return a; | |

} | |

inline APInt operator+(uint64_t LHS, APInt b) { | |

b += LHS; | |

return b; | |

} | |

inline APInt operator-(APInt a, const APInt &b) { | |

a -= b; | |

return a; | |

} | |

inline APInt operator-(const APInt &a, APInt &&b) { | |

b = -std::move(b); | |

b += a; | |

return std::move(b); | |

} | |

inline APInt operator-(APInt a, uint64_t RHS) { | |

a -= RHS; | |

return a; | |

} | |

inline APInt operator-(uint64_t LHS, APInt b) { | |

b = -std::move(b); | |

b += LHS; | |

return b; | |

} | |

namespace APIntOps { | |

/// \brief Determine the smaller of two APInts considered to be signed. | |

inline const APInt &smin(const APInt &A, const APInt &B) { | |

return A.slt(B) ? A : B; | |

} | |

/// \brief Determine the larger of two APInts considered to be signed. | |

inline const APInt &smax(const APInt &A, const APInt &B) { | |

return A.sgt(B) ? A : B; | |

} | |

/// \brief Determine the smaller of two APInts considered to be signed. | |

inline const APInt &umin(const APInt &A, const APInt &B) { | |

return A.ult(B) ? A : B; | |

} | |

/// \brief Determine the larger of two APInts considered to be unsigned. | |

inline const APInt &umax(const APInt &A, const APInt &B) { | |

return A.ugt(B) ? A : B; | |

} | |

/// \brief Check if the specified APInt has a N-bits unsigned integer value. | |

inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); } | |

/// \brief Check if the specified APInt has a N-bits signed integer value. | |

inline bool isSignedIntN(unsigned N, const APInt &APIVal) { | |

return APIVal.isSignedIntN(N); | |

} | |

/// \returns true if the argument APInt value is a sequence of ones starting at | |

/// the least significant bit with the remainder zero. | |

inline bool isMask(unsigned numBits, const APInt &APIVal) { | |

return numBits <= APIVal.getBitWidth() && | |

APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); | |

} | |

/// \returns true if the argument is a non-empty sequence of ones starting at | |

/// the least significant bit with the remainder zero (32 bit version). | |

/// Ex. isMask(0x0000FFFFU) == true. | |

inline bool isMask(const APInt &Value) { | |

return (Value != 0) && ((Value + 1) & Value) == 0; | |

} | |

/// \brief Return true if the argument APInt value contains a sequence of ones | |

/// with the remainder zero. | |

inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) { | |

return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal); | |

} | |

/// \brief Returns a byte-swapped representation of the specified APInt Value. | |

inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); } | |

/// \brief Returns the floor log base 2 of the specified APInt value. | |

inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); } | |

/// \brief Compute GCD of two APInt values. | |

/// | |

/// This function returns the greatest common divisor of the two APInt values | |

/// using Euclid's algorithm. | |

/// | |

/// \returns the greatest common divisor of Val1 and Val2 | |

APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2); | |

/// \brief Converts the given APInt to a double value. | |

/// | |

/// Treats the APInt as an unsigned value for conversion purposes. | |

inline double RoundAPIntToDouble(const APInt &APIVal) { | |

return APIVal.roundToDouble(); | |

} | |

/// \brief Converts the given APInt to a double value. | |

/// | |

/// Treats the APInt as a signed value for conversion purposes. | |

inline double RoundSignedAPIntToDouble(const APInt &APIVal) { | |

return APIVal.signedRoundToDouble(); | |

} | |

/// \brief Converts the given APInt to a float vlalue. | |

inline float RoundAPIntToFloat(const APInt &APIVal) { | |

return float(RoundAPIntToDouble(APIVal)); | |

} | |

/// \brief Converts the given APInt to a float value. | |

/// | |

/// Treast the APInt as a signed value for conversion purposes. | |

inline float RoundSignedAPIntToFloat(const APInt &APIVal) { | |

return float(APIVal.signedRoundToDouble()); | |

} | |

/// \brief Converts the given double value into a APInt. | |

/// | |

/// This function convert a double value to an APInt value. | |

APInt RoundDoubleToAPInt(double Double, unsigned width); | |

/// \brief Converts a float value into a APInt. | |

/// | |

/// Converts a float value into an APInt value. | |

inline APInt RoundFloatToAPInt(float Float, unsigned width) { | |

return RoundDoubleToAPInt(double(Float), width); | |

} | |

/// \brief Arithmetic right-shift function. | |

/// | |

/// Arithmetic right-shift the APInt by shiftAmt. | |

inline APInt ashr(const APInt &LHS, unsigned shiftAmt) { | |

return LHS.ashr(shiftAmt); | |

} | |

/// \brief Logical right-shift function. | |

/// | |

/// Logical right-shift the APInt by shiftAmt. | |

inline APInt lshr(const APInt &LHS, unsigned shiftAmt) { | |

return LHS.lshr(shiftAmt); | |

} | |

/// \brief Left-shift function. | |

/// | |

/// Left-shift the APInt by shiftAmt. | |

inline APInt shl(const APInt &LHS, unsigned shiftAmt) { | |

return LHS.shl(shiftAmt); | |

} | |

/// \brief Signed division function for APInt. | |

/// | |

/// Signed divide APInt LHS by APInt RHS. | |

inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); } | |

/// \brief Unsigned division function for APInt. | |

/// | |

/// Unsigned divide APInt LHS by APInt RHS. | |

inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); } | |

/// \brief Function for signed remainder operation. | |

/// | |

/// Signed remainder operation on APInt. | |

inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); } | |

/// \brief Function for unsigned remainder operation. | |

/// | |

/// Unsigned remainder operation on APInt. | |

inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); } | |

/// \brief Function for multiplication operation. | |

/// | |

/// Performs multiplication on APInt values. | |

inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; } | |

/// \brief Function for addition operation. | |

/// | |

/// Performs addition on APInt values. | |

inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; } | |

/// \brief Function for subtraction operation. | |

/// | |

/// Performs subtraction on APInt values. | |

inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; } | |

/// \brief Bitwise AND function for APInt. | |

/// | |

/// Performs bitwise AND operation on APInt LHS and | |

/// APInt RHS. | |

inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; } | |

/// \brief Bitwise OR function for APInt. | |

/// | |

/// Performs bitwise OR operation on APInt LHS and APInt RHS. | |

inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; } | |

/// \brief Bitwise XOR function for APInt. | |

/// | |

/// Performs bitwise XOR operation on APInt. | |

inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; } | |

/// \brief Bitwise complement function. | |

/// | |

/// Performs a bitwise complement operation on APInt. | |

inline APInt Not(const APInt &APIVal) { return ~APIVal; } | |

} // End of APIntOps namespace | |

// See friend declaration above. This additional declaration is required in | |

// order to compile LLVM with IBM xlC compiler. | |

hash_code hash_value(const APInt &Arg); | |

} // End of llvm namespace | |

#endif |