blob: e1edd21abc0f7c6328458ec7070141e15f796fef [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "PixelRoutine.hpp"
#include "Constants.hpp"
#include "SamplerCore.hpp"
#include "Device/Primitive.hpp"
#include "Device/QuadRasterizer.hpp"
#include "Device/Renderer.hpp"
#include "System/Debug.hpp"
#include "Vulkan/VkPipelineLayout.hpp"
#include "Vulkan/VkStringify.hpp"
namespace sw {
PixelRoutine::PixelRoutine(
const PixelProcessor::State &state,
vk::PipelineLayout const *pipelineLayout,
SpirvShader const *spirvShader,
const vk::DescriptorSet::Bindings &descriptorSets)
: QuadRasterizer(state, spirvShader)
, routine(pipelineLayout)
, descriptorSets(descriptorSets)
, shaderContainsInterpolation(spirvShader && spirvShader->getUsedCapabilities().InterpolationFunction)
, shaderContainsSampleQualifier(spirvShader && spirvShader->getAnalysis().ContainsSampleQualifier)
, perSampleShading((state.sampleShadingEnabled && (state.minSampleShading * state.multiSampleCount > 1.0f)) ||
shaderContainsSampleQualifier || shaderContainsInterpolation) // TODO(b/194714095)
, invocationCount(perSampleShading ? state.multiSampleCount : 1)
{
if(spirvShader)
{
spirvShader->emitProlog(&routine);
// Clearing inputs to 0 is not demanded by the spec,
// but it makes the undefined behavior deterministic.
// TODO(b/155148722): Remove to detect UB.
for(int i = 0; i < MAX_INTERFACE_COMPONENTS; i++)
{
routine.inputs[i] = Float4(0.0f);
}
}
}
PixelRoutine::~PixelRoutine()
{
}
PixelRoutine::SampleSet PixelRoutine::getSampleSet(int invocation) const
{
unsigned int sampleBegin = perSampleShading ? invocation : 0;
unsigned int sampleEnd = perSampleShading ? (invocation + 1) : state.multiSampleCount;
SampleSet samples;
for(unsigned int q = sampleBegin; q < sampleEnd; q++)
{
if(state.multiSampleMask & (1 << q))
{
samples.push_back(q);
}
}
return samples;
}
void PixelRoutine::quad(Pointer<Byte> cBuffer[MAX_COLOR_BUFFERS], Pointer<Byte> &zBuffer, Pointer<Byte> &sBuffer, Int cMask[4], Int &x, Int &y)
{
const bool earlyFragmentTests = !spirvShader || spirvShader->getExecutionModes().EarlyFragmentTests;
Int zMask[4]; // Depth mask
Int sMask[4]; // Stencil mask
Float4 unclampedZ[4];
for(int invocation = 0; invocation < invocationCount; invocation++)
{
SampleSet samples = getSampleSet(invocation);
if(samples.empty())
{
continue;
}
for(unsigned int q : samples)
{
zMask[q] = cMask[q];
sMask[q] = cMask[q];
}
stencilTest(sBuffer, x, sMask, samples);
Float4 f;
Float4 rhwCentroid;
Float4 xxxx = Float4(Float(x)) + *Pointer<Float4>(primitive + OFFSET(Primitive, xQuad), 16);
if(interpolateZ())
{
for(unsigned int q : samples)
{
Float4 x = xxxx;
if(state.enableMultiSampling)
{
x -= *Pointer<Float4>(constants + OFFSET(Constants, X) + q * sizeof(float4));
}
z[q] = interpolate(x, Dz[q], z[q], primitive + OFFSET(Primitive, z), false, false);
if(state.depthBias)
{
z[q] += *Pointer<Float4>(primitive + OFFSET(Primitive, zBias), 16);
}
unclampedZ[q] = z[q];
}
}
Bool depthPass = false;
if(earlyFragmentTests)
{
for(unsigned int q : samples)
{
z[q] = clampDepth(z[q]);
depthPass = depthPass || depthTest(zBuffer, q, x, z[q], sMask[q], zMask[q], cMask[q]);
depthBoundsTest(zBuffer, q, x, zMask[q], cMask[q]);
}
}
If(depthPass || !earlyFragmentTests)
{
if(earlyFragmentTests)
{
writeDepth(zBuffer, x, zMask, samples);
}
Float4 yyyy = Float4(Float(y)) + *Pointer<Float4>(primitive + OFFSET(Primitive, yQuad), 16);
// Centroid locations
Float4 XXXX = Float4(0.0f);
Float4 YYYY = Float4(0.0f);
if(state.centroid || shaderContainsInterpolation) // TODO(b/194714095)
{
Float4 WWWW(1.0e-9f);
for(unsigned int q : samples)
{
XXXX += *Pointer<Float4>(constants + OFFSET(Constants, sampleX[q]) + 16 * cMask[q]);
YYYY += *Pointer<Float4>(constants + OFFSET(Constants, sampleY[q]) + 16 * cMask[q]);
WWWW += *Pointer<Float4>(constants + OFFSET(Constants, weight) + 16 * cMask[q]);
}
WWWW = Rcp(WWWW, Precision::Relaxed);
XXXX *= WWWW;
YYYY *= WWWW;
XXXX += xxxx;
YYYY += yyyy;
}
if(interpolateW())
{
w = interpolate(xxxx, Dw, rhw, primitive + OFFSET(Primitive, w), false, false);
rhw = reciprocal(w, false, true);
if(state.centroid || shaderContainsInterpolation) // TODO(b/194714095)
{
rhwCentroid = reciprocal(SpirvRoutine::interpolateAtXY(XXXX, YYYY, rhwCentroid, primitive + OFFSET(Primitive, w), false, false));
}
}
if(spirvShader)
{
if(shaderContainsInterpolation) // TODO(b/194714095)
{
routine.interpolationData.primitive = primitive;
routine.interpolationData.x = xxxx;
routine.interpolationData.y = yyyy;
routine.interpolationData.rhw = rhw;
routine.interpolationData.xCentroid = XXXX;
routine.interpolationData.yCentroid = YYYY;
routine.interpolationData.rhwCentroid = rhwCentroid;
}
if(perSampleShading && (state.multiSampleCount > 1))
{
xxxx += Float4(Constants::SampleLocationsX[samples[0]]);
yyyy += Float4(Constants::SampleLocationsY[samples[0]]);
}
int packedInterpolant = 0;
for(int interfaceInterpolant = 0; interfaceInterpolant < MAX_INTERFACE_COMPONENTS; interfaceInterpolant++)
{
auto const &input = spirvShader->inputs[interfaceInterpolant];
if(input.Type != SpirvShader::ATTRIBTYPE_UNUSED)
{
if(input.Centroid && state.enableMultiSampling)
{
routine.inputs[interfaceInterpolant] =
SpirvRoutine::interpolateAtXY(XXXX, YYYY, rhwCentroid,
primitive + OFFSET(Primitive, V[packedInterpolant]),
input.Flat, !input.NoPerspective);
}
else if(perSampleShading)
{
routine.inputs[interfaceInterpolant] =
SpirvRoutine::interpolateAtXY(xxxx, yyyy, rhw,
primitive + OFFSET(Primitive, V[packedInterpolant]),
input.Flat, !input.NoPerspective);
}
else
{
routine.inputs[interfaceInterpolant] =
interpolate(xxxx, Dv[interfaceInterpolant], rhw,
primitive + OFFSET(Primitive, V[packedInterpolant]),
input.Flat, !input.NoPerspective);
}
packedInterpolant++;
}
}
setBuiltins(x, y, unclampedZ, w, cMask, samples);
for(uint32_t i = 0; i < state.numClipDistances; i++)
{
auto distance = interpolate(xxxx, DclipDistance[i], rhw,
primitive + OFFSET(Primitive, clipDistance[i]),
false, true);
auto clipMask = SignMask(CmpGE(distance, SIMD::Float(0)));
for(unsigned int q : samples)
{
// FIXME(b/148105887): Fragments discarded by clipping do not exist at
// all -- they should not be counted in queries or have their Z/S effects
// performed when early fragment tests are enabled.
cMask[q] &= clipMask;
}
if(spirvShader->getUsedCapabilities().ClipDistance)
{
auto it = spirvShader->inputBuiltins.find(spv::BuiltInClipDistance);
if(it != spirvShader->inputBuiltins.end())
{
if(i < it->second.SizeInComponents)
{
routine.getVariable(it->second.Id)[it->second.FirstComponent + i] = distance;
}
}
}
}
if(spirvShader->getUsedCapabilities().CullDistance)
{
auto it = spirvShader->inputBuiltins.find(spv::BuiltInCullDistance);
if(it != spirvShader->inputBuiltins.end())
{
for(uint32_t i = 0; i < state.numCullDistances; i++)
{
if(i < it->second.SizeInComponents)
{
routine.getVariable(it->second.Id)[it->second.FirstComponent + i] =
interpolate(xxxx, DcullDistance[i], rhw,
primitive + OFFSET(Primitive, cullDistance[i]),
false, true);
}
}
}
}
}
if(spirvShader)
{
executeShader(cMask, earlyFragmentTests ? sMask : cMask, earlyFragmentTests ? zMask : cMask, samples);
}
Bool alphaPass = alphaTest(cMask, samples);
if((spirvShader && spirvShader->getAnalysis().ContainsKill) || state.alphaToCoverage)
{
for(unsigned int q : samples)
{
zMask[q] &= cMask[q];
sMask[q] &= cMask[q];
}
}
If(alphaPass)
{
if(!earlyFragmentTests)
{
for(unsigned int q : samples)
{
z[q] = clampDepth(z[q]);
depthPass = depthPass || depthTest(zBuffer, q, x, z[q], sMask[q], zMask[q], cMask[q]);
depthBoundsTest(zBuffer, q, x, zMask[q], cMask[q]);
}
}
If(depthPass)
{
if(!earlyFragmentTests)
{
writeDepth(zBuffer, x, zMask, samples);
}
blendColor(cBuffer, x, sMask, zMask, cMask, samples);
occlusionSampleCount(zMask, sMask, samples);
}
}
}
writeStencil(sBuffer, x, sMask, zMask, cMask, samples);
}
}
void PixelRoutine::stencilTest(const Pointer<Byte> &sBuffer, const Int &x, Int sMask[4], const SampleSet &samples)
{
if(!state.stencilActive)
{
return;
}
for(unsigned int q : samples)
{
// (StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)
Pointer<Byte> buffer = sBuffer + x;
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, stencilSliceB));
}
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, stencilPitchB));
Byte8 value = *Pointer<Byte8>(buffer) & Byte8(-1, -1, 0, 0, 0, 0, 0, 0);
value = value | (*Pointer<Byte8>(buffer + pitch - 2) & Byte8(0, 0, -1, -1, 0, 0, 0, 0));
Byte8 valueBack = value;
if(state.frontStencil.compareMask != 0xff)
{
value &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[0].testMaskQ));
}
stencilTest(value, state.frontStencil.compareOp, false);
if(state.backStencil.compareMask != 0xff)
{
valueBack &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[1].testMaskQ));
}
stencilTest(valueBack, state.backStencil.compareOp, true);
value &= *Pointer<Byte8>(primitive + OFFSET(Primitive, clockwiseMask));
valueBack &= *Pointer<Byte8>(primitive + OFFSET(Primitive, invClockwiseMask));
value |= valueBack;
sMask[q] &= SignMask(value);
}
}
void PixelRoutine::stencilTest(Byte8 &value, VkCompareOp stencilCompareMode, bool isBack)
{
Byte8 equal;
switch(stencilCompareMode)
{
case VK_COMPARE_OP_ALWAYS:
value = Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
break;
case VK_COMPARE_OP_NEVER:
value = Byte8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);
break;
case VK_COMPARE_OP_LESS: // a < b ~ b > a
value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
value = CmpGT(As<SByte8>(value), *Pointer<SByte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ)));
break;
case VK_COMPARE_OP_EQUAL:
value = CmpEQ(value, *Pointer<Byte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ)));
break;
case VK_COMPARE_OP_NOT_EQUAL: // a != b ~ !(a == b)
value = CmpEQ(value, *Pointer<Byte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ)));
value ^= Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
break;
case VK_COMPARE_OP_LESS_OR_EQUAL: // a <= b ~ (b > a) || (a == b)
equal = value;
equal = CmpEQ(equal, *Pointer<Byte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedQ)));
value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
value = CmpGT(As<SByte8>(value), *Pointer<SByte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ)));
value |= equal;
break;
case VK_COMPARE_OP_GREATER: // a > b
equal = *Pointer<Byte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ));
value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
equal = CmpGT(As<SByte8>(equal), As<SByte8>(value));
value = equal;
break;
case VK_COMPARE_OP_GREATER_OR_EQUAL: // a >= b ~ !(a < b) ~ !(b > a)
value += Byte8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
value = CmpGT(As<SByte8>(value), *Pointer<SByte8>(data + OFFSET(DrawData, stencil[isBack].referenceMaskedSignedQ)));
value ^= Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
break;
default:
UNSUPPORTED("VkCompareOp: %d", int(stencilCompareMode));
}
}
Bool PixelRoutine::depthTest32F(const Pointer<Byte> &zBuffer, int q, const Int &x, const Float4 &z, const Int &sMask, Int &zMask, const Int &cMask)
{
Float4 Z = z;
Pointer<Byte> buffer = zBuffer + 4 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Float4 zValue;
if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable))
{
zValue = Float4(*Pointer<Float2>(buffer), *Pointer<Float2>(buffer + pitch));
}
Int4 zTest;
switch(state.depthCompareMode)
{
case VK_COMPARE_OP_ALWAYS:
// Optimized
break;
case VK_COMPARE_OP_NEVER:
// Optimized
break;
case VK_COMPARE_OP_EQUAL:
zTest = CmpEQ(zValue, Z);
break;
case VK_COMPARE_OP_NOT_EQUAL:
zTest = CmpNEQ(zValue, Z);
break;
case VK_COMPARE_OP_LESS:
zTest = CmpNLE(zValue, Z);
break;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
zTest = CmpLE(zValue, Z);
break;
case VK_COMPARE_OP_LESS_OR_EQUAL:
zTest = CmpNLT(zValue, Z);
break;
case VK_COMPARE_OP_GREATER:
zTest = CmpLT(zValue, Z);
break;
default:
UNSUPPORTED("VkCompareOp: %d", int(state.depthCompareMode));
}
switch(state.depthCompareMode)
{
case VK_COMPARE_OP_ALWAYS:
zMask = cMask;
break;
case VK_COMPARE_OP_NEVER:
zMask = 0x0;
break;
default:
zMask = SignMask(zTest) & cMask;
break;
}
if(state.stencilActive)
{
zMask &= sMask;
}
return zMask != 0;
}
Bool PixelRoutine::depthTest16(const Pointer<Byte> &zBuffer, int q, const Int &x, const Float4 &z, const Int &sMask, Int &zMask, const Int &cMask)
{
Short4 Z = convertFixed16(z, true);
Pointer<Byte> buffer = zBuffer + 2 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Short4 zValue;
if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable))
{
zValue = As<Short4>(Insert(As<Int2>(zValue), *Pointer<Int>(buffer), 0));
zValue = As<Short4>(Insert(As<Int2>(zValue), *Pointer<Int>(buffer + pitch), 1));
}
Int4 zTest;
// Bias values to make unsigned compares out of Reactor's (due SSE's) signed compares only
zValue = zValue - Short4(0x8000u);
Z = Z - Short4(0x8000u);
switch(state.depthCompareMode)
{
case VK_COMPARE_OP_ALWAYS:
// Optimized
break;
case VK_COMPARE_OP_NEVER:
// Optimized
break;
case VK_COMPARE_OP_EQUAL:
zTest = Int4(CmpEQ(zValue, Z));
break;
case VK_COMPARE_OP_NOT_EQUAL:
zTest = ~Int4(CmpEQ(zValue, Z));
break;
case VK_COMPARE_OP_LESS:
zTest = Int4(CmpGT(zValue, Z));
break;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
zTest = ~Int4(CmpGT(zValue, Z));
break;
case VK_COMPARE_OP_LESS_OR_EQUAL:
zTest = ~Int4(CmpGT(Z, zValue));
break;
case VK_COMPARE_OP_GREATER:
zTest = Int4(CmpGT(Z, zValue));
break;
default:
UNSUPPORTED("VkCompareOp: %d", int(state.depthCompareMode));
}
switch(state.depthCompareMode)
{
case VK_COMPARE_OP_ALWAYS:
zMask = cMask;
break;
case VK_COMPARE_OP_NEVER:
zMask = 0x0;
break;
default:
zMask = SignMask(zTest) & cMask;
break;
}
if(state.stencilActive)
{
zMask &= sMask;
}
return zMask != 0;
}
Float4 PixelRoutine::clampDepth(const Float4 &z)
{
if(!state.depthClamp)
{
return z;
}
return Min(Max(z, Float4(state.minDepthClamp)), Float4(state.maxDepthClamp));
}
Bool PixelRoutine::depthTest(const Pointer<Byte> &zBuffer, int q, const Int &x, const Float4 &z, const Int &sMask, Int &zMask, const Int &cMask)
{
if(!state.depthTestActive)
{
return true;
}
switch(state.depthFormat)
{
case VK_FORMAT_D16_UNORM:
return depthTest16(zBuffer, q, x, z, sMask, zMask, cMask);
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return depthTest32F(zBuffer, q, x, z, sMask, zMask, cMask);
default:
UNSUPPORTED("Depth format: %d", int(state.depthFormat));
return false;
}
}
Int4 PixelRoutine::depthBoundsTest16(const Pointer<Byte> &zBuffer, int q, const Int &x)
{
Pointer<Byte> buffer = zBuffer + 2 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Float4 minDepthBound(state.minDepthBounds);
Float4 maxDepthBound(state.maxDepthBounds);
Int2 z;
z = Insert(z, *Pointer<Int>(buffer), 0);
z = Insert(z, *Pointer<Int>(buffer + pitch), 1);
Float4 zValue = convertFloat32(As<UShort4>(z));
return Int4(CmpLE(minDepthBound, zValue) & CmpLE(zValue, maxDepthBound));
}
Int4 PixelRoutine::depthBoundsTest32F(const Pointer<Byte> &zBuffer, int q, const Int &x)
{
Pointer<Byte> buffer = zBuffer + 4 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Float4 zValue = Float4(*Pointer<Float2>(buffer), *Pointer<Float2>(buffer + pitch));
return Int4(CmpLE(Float4(state.minDepthBounds), zValue) & CmpLE(zValue, Float4(state.maxDepthBounds)));
}
void PixelRoutine::depthBoundsTest(const Pointer<Byte> &zBuffer, int q, const Int &x, Int &zMask, Int &cMask)
{
if(!state.depthBoundsTestActive)
{
return;
}
Int4 zTest;
switch(state.depthFormat)
{
case VK_FORMAT_D16_UNORM:
zTest = depthBoundsTest16(zBuffer, q, x);
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
zTest = depthBoundsTest32F(zBuffer, q, x);
break;
default:
UNSUPPORTED("Depth format: %d", int(state.depthFormat));
break;
}
if(!state.depthTestActive)
{
cMask &= zMask & SignMask(zTest);
}
else
{
zMask &= cMask & SignMask(zTest);
}
}
void PixelRoutine::alphaToCoverage(Int cMask[4], const Float4 &alpha, const SampleSet &samples)
{
static const int a2c[4] = {
OFFSET(DrawData, a2c0),
OFFSET(DrawData, a2c1),
OFFSET(DrawData, a2c2),
OFFSET(DrawData, a2c3),
};
for(unsigned int q : samples)
{
Int4 coverage = CmpNLT(alpha, *Pointer<Float4>(data + a2c[q]));
Int aMask = SignMask(coverage);
cMask[q] &= aMask;
}
}
void PixelRoutine::writeDepth32F(Pointer<Byte> &zBuffer, int q, const Int &x, const Float4 &z, const Int &zMask)
{
Float4 Z = z;
Pointer<Byte> buffer = zBuffer + 4 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Float4 zValue;
if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable))
{
zValue = Float4(*Pointer<Float2>(buffer), *Pointer<Float2>(buffer + pitch));
}
Z = As<Float4>(As<Int4>(Z) & *Pointer<Int4>(constants + OFFSET(Constants, maskD4X) + zMask * 16, 16));
zValue = As<Float4>(As<Int4>(zValue) & *Pointer<Int4>(constants + OFFSET(Constants, invMaskD4X) + zMask * 16, 16));
Z = As<Float4>(As<Int4>(Z) | As<Int4>(zValue));
*Pointer<Float2>(buffer) = Float2(Z.xy);
*Pointer<Float2>(buffer + pitch) = Float2(Z.zw);
}
void PixelRoutine::writeDepth16(Pointer<Byte> &zBuffer, int q, const Int &x, const Float4 &z, const Int &zMask)
{
Short4 Z = As<Short4>(convertFixed16(z, true));
Pointer<Byte> buffer = zBuffer + 2 * x;
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, depthPitchB));
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, depthSliceB));
}
Short4 zValue;
if(state.depthCompareMode != VK_COMPARE_OP_NEVER || (state.depthCompareMode != VK_COMPARE_OP_ALWAYS && !state.depthWriteEnable))
{
zValue = As<Short4>(Insert(As<Int2>(zValue), *Pointer<Int>(buffer), 0));
zValue = As<Short4>(Insert(As<Int2>(zValue), *Pointer<Int>(buffer + pitch), 1));
}
Z = Z & *Pointer<Short4>(constants + OFFSET(Constants, maskW4Q) + zMask * 8, 8);
zValue = zValue & *Pointer<Short4>(constants + OFFSET(Constants, invMaskW4Q) + zMask * 8, 8);
Z = Z | zValue;
*Pointer<Int>(buffer) = Extract(As<Int2>(Z), 0);
*Pointer<Int>(buffer + pitch) = Extract(As<Int2>(Z), 1);
}
void PixelRoutine::writeDepth(Pointer<Byte> &zBuffer, const Int &x, const Int zMask[4], const SampleSet &samples)
{
if(!state.depthWriteEnable)
{
return;
}
for(unsigned int q : samples)
{
switch(state.depthFormat)
{
case VK_FORMAT_D16_UNORM:
writeDepth16(zBuffer, q, x, z[q], zMask[q]);
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
writeDepth32F(zBuffer, q, x, z[q], zMask[q]);
break;
default:
UNSUPPORTED("Depth format: %d", int(state.depthFormat));
break;
}
}
}
void PixelRoutine::occlusionSampleCount(const Int zMask[4], const Int sMask[4], const SampleSet &samples)
{
if(!state.occlusionEnabled)
{
return;
}
for(unsigned int q : samples)
{
occlusion += *Pointer<UInt>(constants + OFFSET(Constants, occlusionCount) + 4 * (zMask[q] & sMask[q]));
}
}
void PixelRoutine::writeStencil(Pointer<Byte> &sBuffer, const Int &x, const Int sMask[4], const Int zMask[4], const Int cMask[4], const SampleSet &samples)
{
if(!state.stencilActive)
{
return;
}
if(state.frontStencil.passOp == VK_STENCIL_OP_KEEP && state.frontStencil.depthFailOp == VK_STENCIL_OP_KEEP && state.frontStencil.failOp == VK_STENCIL_OP_KEEP)
{
if(state.backStencil.passOp == VK_STENCIL_OP_KEEP && state.backStencil.depthFailOp == VK_STENCIL_OP_KEEP && state.backStencil.failOp == VK_STENCIL_OP_KEEP)
{
return;
}
}
if((state.frontStencil.writeMask == 0) && (state.backStencil.writeMask == 0))
{
return;
}
for(unsigned int q : samples)
{
Pointer<Byte> buffer = sBuffer + x;
if(q > 0)
{
buffer += q * *Pointer<Int>(data + OFFSET(DrawData, stencilSliceB));
}
Int pitch = *Pointer<Int>(data + OFFSET(DrawData, stencilPitchB));
Byte8 bufferValue = *Pointer<Byte8>(buffer) & Byte8(-1, -1, 0, 0, 0, 0, 0, 0);
bufferValue = bufferValue | (*Pointer<Byte8>(buffer + pitch - 2) & Byte8(0, 0, -1, -1, 0, 0, 0, 0));
Byte8 newValue;
stencilOperation(newValue, bufferValue, state.frontStencil, false, zMask[q], sMask[q]);
if((state.frontStencil.writeMask & 0xFF) != 0xFF) // Assume 8-bit stencil buffer
{
Byte8 maskedValue = bufferValue;
newValue &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[0].writeMaskQ));
maskedValue &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[0].invWriteMaskQ));
newValue |= maskedValue;
}
Byte8 newValueBack;
stencilOperation(newValueBack, bufferValue, state.backStencil, true, zMask[q], sMask[q]);
if((state.backStencil.writeMask & 0xFF) != 0xFF) // Assume 8-bit stencil buffer
{
Byte8 maskedValue = bufferValue;
newValueBack &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[1].writeMaskQ));
maskedValue &= *Pointer<Byte8>(data + OFFSET(DrawData, stencil[1].invWriteMaskQ));
newValueBack |= maskedValue;
}
newValue &= *Pointer<Byte8>(primitive + OFFSET(Primitive, clockwiseMask));
newValueBack &= *Pointer<Byte8>(primitive + OFFSET(Primitive, invClockwiseMask));
newValue |= newValueBack;
newValue &= *Pointer<Byte8>(constants + OFFSET(Constants, maskB4Q) + 8 * cMask[q]);
bufferValue &= *Pointer<Byte8>(constants + OFFSET(Constants, invMaskB4Q) + 8 * cMask[q]);
newValue |= bufferValue;
*Pointer<Short>(buffer) = Extract(As<Short4>(newValue), 0);
*Pointer<Short>(buffer + pitch) = Extract(As<Short4>(newValue), 1);
}
}
void PixelRoutine::stencilOperation(Byte8 &newValue, const Byte8 &bufferValue, const PixelProcessor::States::StencilOpState &ops, bool isBack, const Int &zMask, const Int &sMask)
{
Byte8 &pass = newValue;
Byte8 fail;
Byte8 zFail;
stencilOperation(pass, bufferValue, ops.passOp, isBack);
if(ops.depthFailOp != ops.passOp)
{
stencilOperation(zFail, bufferValue, ops.depthFailOp, isBack);
}
if(ops.failOp != ops.passOp || ops.failOp != ops.depthFailOp)
{
stencilOperation(fail, bufferValue, ops.failOp, isBack);
}
if(ops.failOp != ops.passOp || ops.failOp != ops.depthFailOp)
{
if(state.depthTestActive && ops.depthFailOp != ops.passOp) // zMask valid and values not the same
{
pass &= *Pointer<Byte8>(constants + OFFSET(Constants, maskB4Q) + 8 * zMask);
zFail &= *Pointer<Byte8>(constants + OFFSET(Constants, invMaskB4Q) + 8 * zMask);
pass |= zFail;
}
pass &= *Pointer<Byte8>(constants + OFFSET(Constants, maskB4Q) + 8 * sMask);
fail &= *Pointer<Byte8>(constants + OFFSET(Constants, invMaskB4Q) + 8 * sMask);
pass |= fail;
}
}
Byte8 PixelRoutine::stencilReplaceRef(bool isBack)
{
if(spirvShader)
{
auto it = spirvShader->outputBuiltins.find(spv::BuiltInFragStencilRefEXT);
if(it != spirvShader->outputBuiltins.end())
{
UInt4 sRef = As<UInt4>(routine.getVariable(it->second.Id)[it->second.FirstComponent]) & UInt4(0xff);
// TODO (b/148295813): Could be done with a single pshufb instruction. Optimize the
// following line by either adding a rr::Shuffle() variant to do
// it explicitly or adding a Byte4(Int4) constructor would work.
sRef.x = rr::UInt(sRef.x) | (rr::UInt(sRef.y) << 8) | (rr::UInt(sRef.z) << 16) | (rr::UInt(sRef.w) << 24);
UInt2 sRefDuplicated;
sRefDuplicated = Insert(sRefDuplicated, sRef.x, 0);
sRefDuplicated = Insert(sRefDuplicated, sRef.x, 1);
return As<Byte8>(sRefDuplicated);
}
}
return *Pointer<Byte8>(data + OFFSET(DrawData, stencil[isBack].referenceQ));
}
void PixelRoutine::stencilOperation(Byte8 &output, const Byte8 &bufferValue, VkStencilOp operation, bool isBack)
{
switch(operation)
{
case VK_STENCIL_OP_KEEP:
output = bufferValue;
break;
case VK_STENCIL_OP_ZERO:
output = Byte8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);
break;
case VK_STENCIL_OP_REPLACE:
output = stencilReplaceRef(isBack);
break;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
output = AddSat(bufferValue, Byte8(1, 1, 1, 1, 1, 1, 1, 1));
break;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
output = SubSat(bufferValue, Byte8(1, 1, 1, 1, 1, 1, 1, 1));
break;
case VK_STENCIL_OP_INVERT:
output = bufferValue ^ Byte8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
break;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
output = bufferValue + Byte8(1, 1, 1, 1, 1, 1, 1, 1);
break;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
output = bufferValue - Byte8(1, 1, 1, 1, 1, 1, 1, 1);
break;
default:
UNSUPPORTED("VkStencilOp: %d", int(operation));
}
}
bool PixelRoutine::isSRGB(int index) const
{
return vk::Format(state.colorFormat[index]).isSRGBformat();
}
void PixelRoutine::readPixel(int index, const Pointer<Byte> &cBuffer, const Int &x, Vector4s &pixel)
{
Short4 c01;
Short4 c23;
Pointer<Byte> buffer = cBuffer;
Pointer<Byte> buffer2;
Int pitchB = *Pointer<Int>(data + OFFSET(DrawData, colorPitchB[index]));
switch(state.colorFormat[index])
{
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.x = (c01 & Short4(0xF000u));
pixel.y = (c01 & Short4(0x0F00u)) << 4;
pixel.z = (c01 & Short4(0x00F0u)) << 8;
pixel.w = (c01 & Short4(0x000Fu)) << 12;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 4);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 8);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 4);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 8);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 4);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 8);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
break;
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.z = (c01 & Short4(0xF000u));
pixel.y = (c01 & Short4(0x0F00u)) << 4;
pixel.x = (c01 & Short4(0x00F0u)) << 8;
pixel.w = (c01 & Short4(0x000Fu)) << 12;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 4);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 8);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 4);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 8);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 4);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 8);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
break;
case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.w = (c01 & Short4(0xF000u));
pixel.z = (c01 & Short4(0x0F00u)) << 4;
pixel.y = (c01 & Short4(0x00F0u)) << 8;
pixel.x = (c01 & Short4(0x000Fu)) << 12;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 4);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 8);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 4);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 8);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 4);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 8);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
break;
case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.w = (c01 & Short4(0xF000u));
pixel.x = (c01 & Short4(0x0F00u)) << 4;
pixel.y = (c01 & Short4(0x00F0u)) << 8;
pixel.z = (c01 & Short4(0x000Fu)) << 12;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 4);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 8);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 4);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 8);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 4);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 8);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
break;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.x = (c01 & Short4(0xF800u));
pixel.y = (c01 & Short4(0x07C0u)) << 5;
pixel.z = (c01 & Short4(0x003Eu)) << 10;
pixel.w = ((c01 & Short4(0x0001u)) << 15) >> 15;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 5);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 5);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 10);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 5);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
break;
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.z = (c01 & Short4(0xF800u));
pixel.y = (c01 & Short4(0x07C0u)) << 5;
pixel.x = (c01 & Short4(0x003Eu)) << 10;
pixel.w = ((c01 & Short4(0x0001u)) << 15) >> 15;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 5);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 5);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 10);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 5);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
break;
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.x = (c01 & Short4(0x7C00u)) << 1;
pixel.y = (c01 & Short4(0x03E0u)) << 6;
pixel.z = (c01 & Short4(0x001Fu)) << 11;
pixel.w = (c01 & Short4(0x8000u)) >> 15;
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 5);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 5);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 10);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 5);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.x = c01 & Short4(0xF800u);
pixel.y = (c01 & Short4(0x07E0u)) << 5;
pixel.z = (c01 & Short4(0x001Fu)) << 11;
pixel.w = Short4(0xFFFFu);
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 5);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 6);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 12);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 5);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
break;
case VK_FORMAT_B5G6R5_UNORM_PACK16:
buffer += 2 * x;
buffer2 = buffer + pitchB;
c01 = As<Short4>(Int2(*Pointer<Int>(buffer), *Pointer<Int>(buffer2)));
pixel.z = c01 & Short4(0xF800u);
pixel.y = (c01 & Short4(0x07E0u)) << 5;
pixel.x = (c01 & Short4(0x001Fu)) << 11;
pixel.w = Short4(0xFFFFu);
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 5);
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 6);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 12);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 5);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
break;
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
buffer += 4 * x;
c01 = *Pointer<Short4>(buffer);
buffer += pitchB;
c23 = *Pointer<Short4>(buffer);
pixel.z = c01;
pixel.y = c01;
pixel.z = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(c23));
pixel.y = UnpackHigh(As<Byte8>(pixel.y), As<Byte8>(c23));
pixel.x = pixel.z;
pixel.z = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(pixel.y));
pixel.x = UnpackHigh(As<Byte8>(pixel.x), As<Byte8>(pixel.y));
pixel.y = pixel.z;
pixel.w = pixel.x;
pixel.x = UnpackLow(As<Byte8>(pixel.x), As<Byte8>(pixel.x));
pixel.y = UnpackHigh(As<Byte8>(pixel.y), As<Byte8>(pixel.y));
pixel.z = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(pixel.z));
pixel.w = UnpackHigh(As<Byte8>(pixel.w), As<Byte8>(pixel.w));
break;
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
buffer += 4 * x;
c01 = *Pointer<Short4>(buffer);
buffer += pitchB;
c23 = *Pointer<Short4>(buffer);
pixel.z = c01;
pixel.y = c01;
pixel.z = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(c23));
pixel.y = UnpackHigh(As<Byte8>(pixel.y), As<Byte8>(c23));
pixel.x = pixel.z;
pixel.z = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(pixel.y));
pixel.x = UnpackHigh(As<Byte8>(pixel.x), As<Byte8>(pixel.y));
pixel.y = pixel.z;
pixel.w = pixel.x;
pixel.x = UnpackLow(As<Byte8>(pixel.z), As<Byte8>(pixel.z));
pixel.y = UnpackHigh(As<Byte8>(pixel.y), As<Byte8>(pixel.y));
pixel.z = UnpackLow(As<Byte8>(pixel.w), As<Byte8>(pixel.w));
pixel.w = UnpackHigh(As<Byte8>(pixel.w), As<Byte8>(pixel.w));
break;
case VK_FORMAT_R8_UNORM:
buffer += 1 * x;
pixel.x = Insert(pixel.x, *Pointer<Short>(buffer), 0);
buffer += pitchB;
pixel.x = Insert(pixel.x, *Pointer<Short>(buffer), 1);
pixel.x = UnpackLow(As<Byte8>(pixel.x), As<Byte8>(pixel.x));
pixel.y = Short4(0x0000);
pixel.z = Short4(0x0000);
pixel.w = Short4(0xFFFFu);
break;
case VK_FORMAT_R8G8_UNORM:
buffer += 2 * x;
c01 = As<Short4>(Insert(As<Int2>(c01), *Pointer<Int>(buffer), 0));
buffer += pitchB;
c01 = As<Short4>(Insert(As<Int2>(c01), *Pointer<Int>(buffer), 1));
pixel.x = (c01 & Short4(0x00FFu)) | (c01 << 8);
pixel.y = (c01 & Short4(0xFF00u)) | As<Short4>(As<UShort4>(c01) >> 8);
pixel.z = Short4(0x0000u);
pixel.w = Short4(0xFFFFu);
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
{
Int4 v = Int4(0);
buffer += 4 * x;
v = Insert(v, *Pointer<Int>(buffer + 0), 0);
v = Insert(v, *Pointer<Int>(buffer + 4), 1);
buffer += pitchB;
v = Insert(v, *Pointer<Int>(buffer + 0), 2);
v = Insert(v, *Pointer<Int>(buffer + 4), 3);
pixel.x = Short4(v << 6) & Short4(0xFFC0u);
pixel.y = Short4(v >> 4) & Short4(0xFFC0u);
pixel.z = Short4(v >> 14) & Short4(0xFFC0u);
pixel.w = Short4(v >> 16) & Short4(0xC000u);
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 10);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 2);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
}
break;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
{
Int4 v = Int4(0);
v = Insert(v, *Pointer<Int>(buffer + 4 * x), 0);
v = Insert(v, *Pointer<Int>(buffer + 4 * x + 4), 1);
buffer += *Pointer<Int>(data + OFFSET(DrawData, colorPitchB[index]));
v = Insert(v, *Pointer<Int>(buffer + 4 * x), 2);
v = Insert(v, *Pointer<Int>(buffer + 4 * x + 4), 3);
pixel.x = Short4(v >> 14) & Short4(0xFFC0u);
pixel.y = Short4(v >> 4) & Short4(0xFFC0u);
pixel.z = Short4(v << 6) & Short4(0xFFC0u);
pixel.w = Short4(v >> 16) & Short4(0xC000u);
// Expand to 16 bit range
pixel.x |= As<Short4>(As<UShort4>(pixel.x) >> 10);
pixel.y |= As<Short4>(As<UShort4>(pixel.y) >> 10);
pixel.z |= As<Short4>(As<UShort4>(pixel.z) >> 10);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 2);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 4);
pixel.w |= As<Short4>(As<UShort4>(pixel.w) >> 8);
}
break;
default:
UNSUPPORTED("VkFormat %d", int(state.colorFormat[index]));
}
if(isSRGB(index))
{
sRGBtoLinear16_12_16(pixel);
}
}
void PixelRoutine::writeColor(int index, const Pointer<Byte> &cBuffer, const Int &x, Vector4s &current, const Int &sMask, const Int &zMask, const Int &cMask)
{
if(isSRGB(index))
{
linearToSRGB16_12_16(current);
}
switch(state.colorFormat[index])
{
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
current.x = current.x - As<Short4>(As<UShort4>(current.x) >> 8) + Short4(0x0080);
current.y = current.y - As<Short4>(As<UShort4>(current.y) >> 8) + Short4(0x0080);
current.z = current.z - As<Short4>(As<UShort4>(current.z) >> 8) + Short4(0x0080);
current.w = current.w - As<Short4>(As<UShort4>(current.w) >> 8) + Short4(0x0080);
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
current.x = current.x - As<Short4>(As<UShort4>(current.x) >> 10) + Short4(0x0020);
current.y = current.y - As<Short4>(As<UShort4>(current.y) >> 10) + Short4(0x0020);
current.z = current.z - As<Short4>(As<UShort4>(current.z) >> 10) + Short4(0x0020);
current.w = current.w - As<Short4>(As<UShort4>(current.w) >> 2) + Short4(0x2000);
break;
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
current.x = current.x - As<Short4>(As<UShort4>(current.x) >> 4) + Short4(0x0800);
current.y = current.y - As<Short4>(As<UShort4>(current.y) >> 4) + Short4(0x0800);
current.z = current.z - As<Short4>(As<UShort4>(current.z) >> 4) + Short4(0x0800);
current.w = current.w - As<Short4>(As<UShort4>(current.w) >> 4) + Short4(0x0800);
break;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
current.x = current.x - As<Short4>(As<UShort4>(current.x) >> 5) + Short4(0x0400);
current.y = current.y - As<Short4>(As<UShort4>(current.y) >> 5) + Short4(0x0400);
current.z = current.z - As<Short4>(As<UShort4>(current.z) >> 5) + Short4(0x0400);
current.w = current.w - As<Short4>(As<UShort4>(current.w) >> 1) + Short4(0x4000);
break;
case VK_FORMAT_B5G6R5_UNORM_PACK16:
case VK_FORMAT_R5G6B5_UNORM_PACK16:
current.x = current.x - As<Short4>(As<UShort4>(current.x) >> 5) + Short4(0x0400);
current.y = current.y - As<Short4>(As<UShort4>(current.y) >> 6) + Short4(0x0200);
current.z = current.z - As<Short4>(As<UShort4>(current.z) >> 5) + Short4(0x0400);
break;
default:
break;
}
int rgbaWriteMask = state.colorWriteActive(index);
int bgraWriteMask = (rgbaWriteMask & 0x0000000A) | (rgbaWriteMask & 0x00000001) << 2 | (rgbaWriteMask & 0x00000004) >> 2;
switch(state.colorFormat[index])
{
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
{
current.x = As<UShort4>(current.x & Short4(0xF000));
current.y = As<UShort4>(current.y & Short4(0xF000)) >> 4;
current.z = As<UShort4>(current.z & Short4(0xF000)) >> 8;
current.w = As<UShort4>(current.w & Short4(0xF000u)) >> 12;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
{
current.z = As<UShort4>(current.z & Short4(0xF000));
current.y = As<UShort4>(current.y & Short4(0xF000)) >> 4;
current.x = As<UShort4>(current.x & Short4(0xF000)) >> 8;
current.w = As<UShort4>(current.w & Short4(0xF000u)) >> 12;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
{
current.w = As<UShort4>(current.w & Short4(0xF000));
current.x = As<UShort4>(current.x & Short4(0xF000)) >> 4;
current.y = As<UShort4>(current.y & Short4(0xF000)) >> 8;
current.z = As<UShort4>(current.z & Short4(0xF000u)) >> 12;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
{
current.w = As<UShort4>(current.w & Short4(0xF000));
current.z = As<UShort4>(current.z & Short4(0xF000)) >> 4;
current.y = As<UShort4>(current.y & Short4(0xF000)) >> 8;
current.x = As<UShort4>(current.x & Short4(0xF000u)) >> 12;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
{
current.x = As<UShort4>(current.x & Short4(0xF800));
current.y = As<UShort4>(current.y & Short4(0xF800)) >> 5;
current.z = As<UShort4>(current.z & Short4(0xF800)) >> 10;
current.w = As<UShort4>(current.w & Short4(0x8000u)) >> 15;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
{
current.z = As<UShort4>(current.z & Short4(0xF800));
current.y = As<UShort4>(current.y & Short4(0xF800)) >> 5;
current.x = As<UShort4>(current.x & Short4(0xF800)) >> 10;
current.w = As<UShort4>(current.w & Short4(0x8000u)) >> 15;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
{
current.w = current.w & Short4(0x8000u);
current.x = As<UShort4>(current.x & Short4(0xF800)) >> 1;
current.y = As<UShort4>(current.y & Short4(0xF800)) >> 6;
current.z = As<UShort4>(current.z & Short4(0xF800)) >> 11;
current.x = current.x | current.y | current.z | current.w;
}
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
{
current.x = current.x & Short4(0xF800u);
current.y = As<UShort4>(current.y & Short4(0xFC00u)) >> 5;
current.z = As<UShort4>(current.z) >> 11;
current.x = current.x | current.y | current.z;
}
break;
case VK_FORMAT_B5G6R5_UNORM_PACK16:
{
current.z = current.z & Short4(0xF800u);
current.y = As<UShort4>(current.y & Short4(0xFC00u)) >> 5;
current.x = As<UShort4>(current.x) >> 11;
current.x = current.x | current.y | current.z;
}
break;
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
if(rgbaWriteMask == 0x7)
{
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.y = As<Short4>(As<UShort4>(current.y) >> 8);
current.z = As<Short4>(As<UShort4>(current.z) >> 8);
current.z = As<Short4>(PackUnsigned(current.z, current.x));
current.y = As<Short4>(PackUnsigned(current.y, current.y));
current.x = current.z;
current.z = UnpackLow(As<Byte8>(current.z), As<Byte8>(current.y));
current.x = UnpackHigh(As<Byte8>(current.x), As<Byte8>(current.y));
current.y = current.z;
current.z = As<Short4>(UnpackLow(current.z, current.x));
current.y = As<Short4>(UnpackHigh(current.y, current.x));
}
else
{
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.y = As<Short4>(As<UShort4>(current.y) >> 8);
current.z = As<Short4>(As<UShort4>(current.z) >> 8);
current.w = As<Short4>(As<UShort4>(current.w) >> 8);
current.z = As<Short4>(PackUnsigned(current.z, current.x));
current.y = As<Short4>(PackUnsigned(current.y, current.w));
current.x = current.z;
current.z = UnpackLow(As<Byte8>(current.z), As<Byte8>(current.y));
current.x = UnpackHigh(As<Byte8>(current.x), As<Byte8>(current.y));
current.y = current.z;
current.z = As<Short4>(UnpackLow(current.z, current.x));
current.y = As<Short4>(UnpackHigh(current.y, current.x));
}
break;
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
if(rgbaWriteMask == 0x7)
{
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.y = As<Short4>(As<UShort4>(current.y) >> 8);
current.z = As<Short4>(As<UShort4>(current.z) >> 8);
current.z = As<Short4>(PackUnsigned(current.x, current.z));
current.y = As<Short4>(PackUnsigned(current.y, current.y));
current.x = current.z;
current.z = UnpackLow(As<Byte8>(current.z), As<Byte8>(current.y));
current.x = UnpackHigh(As<Byte8>(current.x), As<Byte8>(current.y));
current.y = current.z;
current.z = As<Short4>(UnpackLow(current.z, current.x));
current.y = As<Short4>(UnpackHigh(current.y, current.x));
}
else
{
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.y = As<Short4>(As<UShort4>(current.y) >> 8);
current.z = As<Short4>(As<UShort4>(current.z) >> 8);
current.w = As<Short4>(As<UShort4>(current.w) >> 8);
current.z = As<Short4>(PackUnsigned(current.x, current.z));
current.y = As<Short4>(PackUnsigned(current.y, current.w));
current.x = current.z;
current.z = UnpackLow(As<Byte8>(current.z), As<Byte8>(current.y));
current.x = UnpackHigh(As<Byte8>(current.x), As<Byte8>(current.y));
current.y = current.z;
current.z = As<Short4>(UnpackLow(current.z, current.x));
current.y = As<Short4>(UnpackHigh(current.y, current.x));
}
break;
case VK_FORMAT_R8G8_UNORM:
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.y = As<Short4>(As<UShort4>(current.y) >> 8);
current.x = As<Short4>(PackUnsigned(current.x, current.x));
current.y = As<Short4>(PackUnsigned(current.y, current.y));
current.x = UnpackLow(As<Byte8>(current.x), As<Byte8>(current.y));
break;
case VK_FORMAT_R8_UNORM:
current.x = As<Short4>(As<UShort4>(current.x) >> 8);
current.x = As<Short4>(PackUnsigned(current.x, current.x));
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
{
auto r = (Int4(current.x) >> 6) & Int4(0x3ff);
auto g = (Int4(current.y) >> 6) & Int4(0x3ff);
auto b = (Int4(current.z) >> 6) & Int4(0x3ff);
auto a = (Int4(current.w) >> 14) & Int4(0x3);
Int4 packed = (a << 30) | (b << 20) | (g << 10) | r;
auto c02 = As<Int2>(Int4(packed.xzzz)); // TODO: auto c02 = packed.xz;
auto c13 = As<Int2>(Int4(packed.ywww)); // TODO: auto c13 = packed.yw;
current.x = UnpackLow(c02, c13);
current.y = UnpackHigh(c02, c13);
}
break;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
{
auto r = (Int4(current.x) >> 6) & Int4(0x3ff);
auto g = (Int4(current.y) >> 6) & Int4(0x3ff);
auto b = (Int4(current.z) >> 6) & Int4(0x3ff);
auto a = (Int4(current.w) >> 14) & Int4(0x3);
Int4 packed = (a << 30) | (r << 20) | (g << 10) | b;
auto c02 = As<Int2>(Int4(packed.xzzz)); // TODO: auto c02 = packed.xz;
auto c13 = As<Int2>(Int4(packed.ywww)); // TODO: auto c13 = packed.yw;
current.x = UnpackLow(c02, c13);
current.y = UnpackHigh(c02, c13);
}
break;
default:
UNSUPPORTED("VkFormat: %d", int(state.colorFormat[index]));
}
Short4 c01 = current.z;
Short4 c23 = current.y;
Int xMask; // Combination of all masks
if(state.depthTestActive)
{
xMask = zMask;
}
else
{
xMask = cMask;
}
if(state.stencilActive)
{
xMask &= sMask;
}
Pointer<Byte> buffer = cBuffer;
Int pitchB = *Pointer<Int>(data + OFFSET(DrawData, colorPitchB[index]));
switch(state.colorFormat[index])
{
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
{
buffer += 2 * x;
Int value = *Pointer<Int>(buffer);
Int channelMask;
switch(state.colorFormat[index])
{
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask4rgbaQ[bgraWriteMask & 0xF][0]));
break;
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask4bgraQ[bgraWriteMask & 0xF][0]));
break;
case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask4argbQ[bgraWriteMask & 0xF][0]));
break;
case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask4abgrQ[bgraWriteMask & 0xF][0]));
break;
default:
UNREACHABLE("Format: %s", vk::Stringify(state.colorFormat[index]).c_str());
}
Int c01 = Extract(As<Int2>(current.x), 0);
Int mask01 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Int>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Int>(buffer);
Int c23 = Extract(As<Int2>(current.x), 1);
Int mask23 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Int>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
{
buffer += 2 * x;
Int value = *Pointer<Int>(buffer);
Int channelMask = *Pointer<Int>(constants + OFFSET(Constants, maskr5g5b5a1Q[bgraWriteMask & 0xF][0]));
Int c01 = Extract(As<Int2>(current.x), 0);
Int mask01 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Int>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Int>(buffer);
Int c23 = Extract(As<Int2>(current.x), 1);
Int mask23 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Int>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
{
buffer += 2 * x;
Int value = *Pointer<Int>(buffer);
Int channelMask = *Pointer<Int>(constants + OFFSET(Constants, maskb5g5r5a1Q[bgraWriteMask & 0xF][0]));
Int c01 = Extract(As<Int2>(current.x), 0);
Int mask01 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Int>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Int>(buffer);
Int c23 = Extract(As<Int2>(current.x), 1);
Int mask23 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Int>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
{
buffer += 2 * x;
Int value = *Pointer<Int>(buffer);
Int channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask5551Q[bgraWriteMask & 0xF][0]));
Int c01 = Extract(As<Int2>(current.x), 0);
Int mask01 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Int>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Int>(buffer);
Int c23 = Extract(As<Int2>(current.x), 1);
Int mask23 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Int>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
{
buffer += 2 * x;
Int value = *Pointer<Int>(buffer);
Int channelMask = *Pointer<Int>(constants + OFFSET(Constants, mask565Q[bgraWriteMask & 0x7][0]));
Int c01 = Extract(As<Int2>(current.x), 0);
Int mask01 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][0]) + xMask * 8);
if((bgraWriteMask & 0x00000007) != 0x00000007)
{
mask01 &= channelMask;
}
*Pointer<Int>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Int>(buffer);
Int c23 = Extract(As<Int2>(current.x), 1);
Int mask23 = *Pointer<Int>(constants + OFFSET(Constants, maskW4Q[0][2]) + xMask * 8);
if((bgraWriteMask & 0x00000007) != 0x00000007)
{
mask23 &= channelMask;
}
*Pointer<Int>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
{
buffer += x * 4;
Short4 value = *Pointer<Short4>(buffer);
Short4 channelMask = *Pointer<Short4>(constants + OFFSET(Constants, maskB4Q[bgraWriteMask][0]));
Short4 mask01 = *Pointer<Short4>(constants + OFFSET(Constants, maskD01Q) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Short4>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Short4>(buffer);
Short4 mask23 = *Pointer<Short4>(constants + OFFSET(Constants, maskD23Q) + xMask * 8);
if(bgraWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Short4>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
{
buffer += x * 4;
Short4 value = *Pointer<Short4>(buffer);
Short4 channelMask = *Pointer<Short4>(constants + OFFSET(Constants, maskB4Q[rgbaWriteMask][0]));
Short4 mask01 = *Pointer<Short4>(constants + OFFSET(Constants, maskD01Q) + xMask * 8);
if(rgbaWriteMask != 0x0000000F)
{
mask01 &= channelMask;
}
*Pointer<Short4>(buffer) = (c01 & mask01) | (value & ~mask01);
buffer += pitchB;
value = *Pointer<Short4>(buffer);
Short4 mask23 = *Pointer<Short4>(constants + OFFSET(Constants, maskD23Q) + xMask * 8);
if(rgbaWriteMask != 0x0000000F)
{
mask23 &= channelMask;
}
*Pointer<Short4>(buffer) = (c23 & mask23) | (value & ~mask23);
}
break;
case VK_FORMAT_R8G8_UNORM:
if((rgbaWriteMask & 0x00000003) != 0x0)
{
buffer += 2 * x;
Int2 value;
value = Insert(value, *Pointer<Int>(buffer), 0);
value = Insert(value, *Pointer<Int>(buffer + pitchB), 1);
Int2 packedCol = As<Int2>(current.x);
UInt2 mergedMask = *Pointer<UInt2>(constants + OFFSET(Constants, maskW4Q) + xMask * 8);
if((rgbaWriteMask & 0x3) != 0x3)
{
Int tmpMask = *Pointer<Int>(constants + OFFSET(Constants, maskB4Q[5 * (rgbaWriteMask & 0x3)][0]));
UInt2 rgbaMask = As<UInt2>(Int2(tmpMask, tmpMask));
mergedMask &= rgbaMask;
}
packedCol = As<Int2>((As<UInt2>(packedCol) & mergedMask) | (As<UInt2>(value) & ~mergedMask));
*Pointer<UInt>(buffer) = As<UInt>(Extract(packedCol, 0));
*Pointer<UInt>(buffer + pitchB) = As<UInt>(Extract(packedCol, 1));
}
break;
case VK_FORMAT_R8_UNORM:
if(rgbaWriteMask & 0x00000001)
{
buffer += 1 * x;
Short4 value;
value = Insert(value, *Pointer<Short>(buffer), 0);
value = Insert(value, *Pointer<Short>(buffer + pitchB), 1);
current.x &= *Pointer<Short4>(constants + OFFSET(Constants, maskB4Q) + 8 * xMask);
value &= *Pointer<Short4>(constants + OFFSET(Constants, invMaskB4Q) + 8 * xMask);
current.x |= value;
*Pointer<Short>(buffer) = Extract(current.x, 0);
*Pointer<Short>(buffer + pitchB) = Extract(current.x, 1);
}
break;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
rgbaWriteMask = bgraWriteMask;
// [[fallthrough]]
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
{
buffer += 4 * x;
Int2 value = *Pointer<Int2>(buffer, 16);
Int2 mergedMask = *Pointer<Int2>(constants + OFFSET(Constants, maskD01Q) + xMask * 8);
if(rgbaWriteMask != 0xF)
{
mergedMask &= *Pointer<Int2>(constants + OFFSET(Constants, mask10Q[rgbaWriteMask][0]));
}
*Pointer<Int2>(buffer) = (As<Int2>(current.x) & mergedMask) | (value & ~mergedMask);
buffer += pitchB;
value = *Pointer<Int2>(buffer, 16);
mergedMask = *Pointer<Int2>(constants + OFFSET(Constants, maskD23Q) + xMask * 8);
if(rgbaWriteMask != 0xF)
{
mergedMask &= *Pointer<Int2>(constants + OFFSET(Constants, mask10Q[rgbaWriteMask][0]));
}
*Pointer<Int2>(buffer) = (As<Int2>(current.y) & mergedMask) | (value & ~mergedMask);
}
break;
default:
UNSUPPORTED("VkFormat: %d", int(state.colorFormat[index]));
}
}
Float PixelRoutine::blendConstant(vk::Format format, int component, BlendFactorModifier modifier)
{
bool inverse = (modifier == OneMinus);
if(format.isUnsignedNormalized())
{
return inverse ? *Pointer<Float>(data + OFFSET(DrawData, factor.invBlendConstantU[component]))
: *Pointer<Float>(data + OFFSET(DrawData, factor.blendConstantU[component]));
}
else if(format.isSignedNormalized())
{
return inverse ? *Pointer<Float>(data + OFFSET(DrawData, factor.invBlendConstantS[component]))
: *Pointer<Float>(data + OFFSET(DrawData, factor.blendConstantS[component]));
}
else // Floating-point format
{
ASSERT(format.isFloatFormat());
return inverse ? *Pointer<Float>(data + OFFSET(DrawData, factor.invBlendConstantF[component]))
: *Pointer<Float>(data + OFFSET(DrawData, factor.blendConstantF[component]));
}
}
void PixelRoutine::blendFactorRGB(Vector4f &blendFactor, const Vector4f &sourceColor, const Vector4f &destColor, VkBlendFactor colorBlendFactor, vk::Format format)
{
switch(colorBlendFactor)
{
case VK_BLEND_FACTOR_ZERO:
blendFactor.x = Float4(0);
blendFactor.y = Float4(0);
blendFactor.z = Float4(0);
break;
case VK_BLEND_FACTOR_ONE:
blendFactor.x = Float4(1);
blendFactor.y = Float4(1);
blendFactor.z = Float4(1);
break;
case VK_BLEND_FACTOR_SRC_COLOR:
blendFactor.x = sourceColor.x;
blendFactor.y = sourceColor.y;
blendFactor.z = sourceColor.z;
break;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
blendFactor.x = Float4(1.0f) - sourceColor.x;
blendFactor.y = Float4(1.0f) - sourceColor.y;
blendFactor.z = Float4(1.0f) - sourceColor.z;
break;
case VK_BLEND_FACTOR_DST_COLOR:
blendFactor.x = destColor.x;
blendFactor.y = destColor.y;
blendFactor.z = destColor.z;
break;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
blendFactor.x = Float4(1.0f) - destColor.x;
blendFactor.y = Float4(1.0f) - destColor.y;
blendFactor.z = Float4(1.0f) - destColor.z;
break;
case VK_BLEND_FACTOR_SRC_ALPHA:
blendFactor.x = sourceColor.w;
blendFactor.y = sourceColor.w;
blendFactor.z = sourceColor.w;
break;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
blendFactor.x = Float4(1.0f) - sourceColor.w;
blendFactor.y = Float4(1.0f) - sourceColor.w;
blendFactor.z = Float4(1.0f) - sourceColor.w;
break;
case VK_BLEND_FACTOR_DST_ALPHA:
blendFactor.x = destColor.w;
blendFactor.y = destColor.w;
blendFactor.z = destColor.w;
break;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
blendFactor.x = Float4(1.0f) - destColor.w;
blendFactor.y = Float4(1.0f) - destColor.w;
blendFactor.z = Float4(1.0f) - destColor.w;
break;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
blendFactor.x = Float4(1.0f) - destColor.w;
blendFactor.x = Min(blendFactor.x, sourceColor.w);
blendFactor.y = blendFactor.x;
blendFactor.z = blendFactor.x;
break;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
blendFactor.x = Float4(blendConstant(format, 0));
blendFactor.y = Float4(blendConstant(format, 1));
blendFactor.z = Float4(blendConstant(format, 2));
break;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
blendFactor.x = Float4(blendConstant(format, 3));
blendFactor.y = Float4(blendConstant(format, 3));
blendFactor.z = Float4(blendConstant(format, 3));
break;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
blendFactor.x = Float4(blendConstant(format, 0, OneMinus));
blendFactor.y = Float4(blendConstant(format, 1, OneMinus));
blendFactor.z = Float4(blendConstant(format, 2, OneMinus));
break;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
blendFactor.x = Float4(blendConstant(format, 3, OneMinus));
blendFactor.y = Float4(blendConstant(format, 3, OneMinus));
blendFactor.z = Float4(blendConstant(format, 3, OneMinus));
break;
default:
UNSUPPORTED("VkBlendFactor: %d", int(colorBlendFactor));
}
// "If the color attachment is fixed-point, the components of the source and destination values and blend factors are each clamped
// to [0,1] or [-1,1] respectively for an unsigned normalized or signed normalized color attachment prior to evaluating the blend
// operations. If the color attachment is floating-point, no clamping occurs."
if(blendFactorCanExceedFormatRange(colorBlendFactor, format))
{
if(format.isUnsignedNormalized())
{
blendFactor.x = Min(Max(blendFactor.x, Float4(0.0f)), Float4(1.0f));
blendFactor.y = Min(Max(blendFactor.y, Float4(0.0f)), Float4(1.0f));
blendFactor.z = Min(Max(blendFactor.z, Float4(0.0f)), Float4(1.0f));
}
else if(format.isSignedNormalized())
{
blendFactor.x = Min(Max(blendFactor.x, Float4(-1.0f)), Float4(1.0f));
blendFactor.y = Min(Max(blendFactor.y, Float4(-1.0f)), Float4(1.0f));
blendFactor.z = Min(Max(blendFactor.z, Float4(-1.0f)), Float4(1.0f));
}
}
}
void PixelRoutine::blendFactorAlpha(Float4 &blendFactorAlpha, const Float4 &sourceAlpha, const Float4 &destAlpha, VkBlendFactor alphaBlendFactor, vk::Format format)
{
switch(alphaBlendFactor)
{
case VK_BLEND_FACTOR_ZERO:
blendFactorAlpha = Float4(0);
break;
case VK_BLEND_FACTOR_ONE:
blendFactorAlpha = Float4(1);
break;
case VK_BLEND_FACTOR_SRC_COLOR:
blendFactorAlpha = sourceAlpha;
break;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
blendFactorAlpha = Float4(1.0f) - sourceAlpha;
break;
case VK_BLEND_FACTOR_DST_COLOR:
blendFactorAlpha = destAlpha;
break;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
blendFactorAlpha = Float4(1.0f) - destAlpha;
break;
case VK_BLEND_FACTOR_SRC_ALPHA:
blendFactorAlpha = sourceAlpha;
break;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
blendFactorAlpha = Float4(1.0f) - sourceAlpha;
break;
case VK_BLEND_FACTOR_DST_ALPHA:
blendFactorAlpha = destAlpha;
break;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
blendFactorAlpha = Float4(1.0f) - destAlpha;
break;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
blendFactorAlpha = Float4(1.0f);
break;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
blendFactorAlpha = Float4(blendConstant(format, 3));
break;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
blendFactorAlpha = Float4(blendConstant(format, 3, OneMinus));
break;
default:
UNSUPPORTED("VkBlendFactor: %d", int(alphaBlendFactor));
}
// "If the color attachment is fixed-point, the components of the source and destination values and blend factors are each clamped
// to [0,1] or [-1,1] respectively for an unsigned normalized or signed normalized color attachment prior to evaluating the blend
// operations. If the color attachment is floating-point, no clamping occurs."
if(blendFactorCanExceedFormatRange(alphaBlendFactor, format))
{
if(format.isUnsignedNormalized())
{
blendFactorAlpha = Min(Max(blendFactorAlpha, Float4(0.0f)), Float4(1.0f));
}
else if(format.isSignedNormalized())
{
blendFactorAlpha = Min(Max(blendFactorAlpha, Float4(-1.0f)), Float4(1.0f));
}
}
}
Float4 PixelRoutine::blendOpOverlay(Float4 &src, Float4 &dst)
{
Int4 largeDst = CmpGT(dst, Float4(0.5f));
return As<Float4>(
(~largeDst &
As<Int4>(Float4(2.0f) * src * dst)) |
(largeDst &
As<Int4>(Float4(1.0f) - (Float4(2.0f) * (Float4(1.0f) - src) * (Float4(1.0f) - dst)))));
}
Float4 PixelRoutine::blendOpColorDodge(Float4 &src, Float4 &dst)
{
Int4 srcBelowOne = CmpLT(src, Float4(1.0f));
Int4 positiveDst = CmpGT(dst, Float4(0.0f));
return As<Float4>(positiveDst & ((~srcBelowOne &
As<Int4>(Float4(1.0f))) |
(srcBelowOne &
As<Int4>(Min(Float4(1.0f), (dst / (Float4(1.0f) - src)))))));
}
Float4 PixelRoutine::blendOpColorBurn(Float4 &src, Float4 &dst)
{
Int4 dstBelowOne = CmpLT(dst, Float4(1.0f));
Int4 positiveSrc = CmpGT(src, Float4(0.0f));
return As<Float4>(
(~dstBelowOne &
As<Int4>(Float4(1.0f))) |
(dstBelowOne & positiveSrc &
As<Int4>(Float4(1.0f) - Min(Float4(1.0f), (Float4(1.0f) - dst) / src))));
}
Float4 PixelRoutine::blendOpHardlight(Float4 &src, Float4 &dst)
{
Int4 largeSrc = CmpGT(src, Float4(0.5f));
return As<Float4>(
(~largeSrc &
As<Int4>(Float4(2.0f) * src * dst)) |
(largeSrc &
As<Int4>(Float4(1.0f) - (Float4(2.0f) * (Float4(1.0f) - src) * (Float4(1.0f) - dst)))));
}
Float4 PixelRoutine::blendOpSoftlight(Float4 &src, Float4 &dst)
{
Int4 largeSrc = CmpGT(src, Float4(0.5f));
Int4 largeDst = CmpGT(dst, Float4(0.25f));
return As<Float4>(
(~largeSrc &
As<Int4>(dst - ((Float4(1.0f) - (Float4(2.0f) * src)) * dst * (Float4(1.0f) - dst)))) |
(largeSrc & ((~largeDst &
As<Int4>(dst + (((Float4(2.0f) * src) - Float4(1.0f)) * dst * ((((Float4(16.0f) * dst) - Float4(12.0f)) * dst) + Float4(3.0f))))) |
(largeDst &
As<Int4>(dst + (((Float4(2.0f) * src) - Float4(1.0f)) * (Sqrt(dst) - dst)))))));
}
Float4 PixelRoutine::maxRGB(Vector4f &c)
{
return Max(Max(c.x, c.y), c.z);
}
Float4 PixelRoutine::minRGB(Vector4f &c)
{
return Min(Min(c.x, c.y), c.z);
}
void PixelRoutine::setLumSat(Vector4f &cbase, Vector4f &csat, Vector4f &clum, Float4 &x, Float4 &y, Float4 &z)
{
Float4 minbase = minRGB(cbase);
Float4 sbase = maxRGB(cbase) - minbase;
Float4 ssat = maxRGB(csat) - minRGB(csat);
Int4 isNonZero = CmpGT(sbase, Float4(0.0f));
Vector4f color;
color.x = As<Float4>(isNonZero & As<Int4>((cbase.x - minbase) * ssat / sbase));
color.y = As<Float4>(isNonZero & As<Int4>((cbase.y - minbase) * ssat / sbase));
color.z = As<Float4>(isNonZero & As<Int4>((cbase.z - minbase) * ssat / sbase));
setLum(color, clum, x, y, z);
}
Float4 PixelRoutine::lumRGB(Vector4f &c)
{
return c.x * Float4(0.3f) + c.y * Float4(0.59f) + c.z * Float4(0.11f);
}
Float4 PixelRoutine::computeLum(Float4 &color, Float4 &lum, Float4 &mincol, Float4 &maxcol, Int4 &negative, Int4 &aboveOne)
{
return As<Float4>(
(negative &
As<Int4>(lum + ((color - lum) * lum) / (lum - mincol))) |
(~negative &
((aboveOne &
As<Int4>(lum + ((color - lum) * (Float4(1.0f) - lum)) / (Float4(maxcol) - lum))) |
(~aboveOne &
As<Int4>(color)))));
}
void PixelRoutine::setLum(Vector4f &cbase, Vector4f &clum, Float4 &x, Float4 &y, Float4 &z)
{
Float4 lbase = lumRGB(cbase);
Float4 llum = lumRGB(clum);
Float4 ldiff = llum - lbase;
Vector4f color;
color.x = cbase.x + ldiff;
color.y = cbase.y + ldiff;
color.z = cbase.z + ldiff;
Float4 lum = lumRGB(color);
Float4 mincol = minRGB(color);
Float4 maxcol = maxRGB(color);
Int4 negative = CmpLT(mincol, Float4(0.0f));
Int4 aboveOne = CmpGT(maxcol, Float4(1.0f));
x = computeLum(color.x, lum, mincol, maxcol, negative, aboveOne);
y = computeLum(color.y, lum, mincol, maxcol, negative, aboveOne);
z = computeLum(color.z, lum, mincol, maxcol, negative, aboveOne);
}
void PixelRoutine::premultiply(Vector4f &c)
{
Int4 nonZeroAlpha = CmpNEQ(c.w, Float4(0.0f));
c.x = As<Float4>(nonZeroAlpha & As<Int4>(c.x / c.w));
c.y = As<Float4>(nonZeroAlpha & As<Int4>(c.y / c.w));
c.z = As<Float4>(nonZeroAlpha & As<Int4>(c.z / c.w));
}
Vector4f PixelRoutine::computeAdvancedBlendMode(int index, const Vector4f